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A B S T R A C T

A novel meshless numerical scheme, based on the generalized finite difference method (GFDM), is proposed to
accurately analyze the two–dimensional shallow water equations (SWEs). The SWEs are a hyperbolic system of
first-order nonlinear partial differential equations and can be used to describe various problems in hydraulic
and ocean engineering, so it is of great importance to develop an efficient and accurate numerical model to
analyze the SWEs. According to split-coefficient matrix methods, the SWEs can be transformed to a
characteristic form, which can easily present information of characteristic in the correct directions. The
GFDM and the second-order Runge-Kutta method are adopted for spatial and temporal discretization of the
characteristic form of the SWEs, respectively. The GFDM is one of the newly-developed domain-type meshless
methods, so the time-consuming tasks of mesh generation and numerical quadrature can be truly avoided. To
use the moving-least squares method of the GFDM, the spatial derivatives at every node can be expressed as
linear combinations of nearby function values with different weighting coefficients. In order to properly
cooperate with the split-coefficient matrix methods and the characteristic of the SWEs, a new way to determine
the shape of star in the GFDM is proposed in this paper to capture the wave transmission. Numerical results and
comparisons from several examples are provided to verify the merits of the proposed meshless scheme. Besides,
the numerical results are compared with other solutions to validate the accuracy and the consistency of the
proposed meshless numerical scheme.

1. Introduction

The flow fields of incompressible viscous fluid are governed by the
well-known Navier-Stokes equations, which can be derived from the
conservation law of mass and momentum. Under some assumptions
[1], the shallow water equations can be derived by integrating the
Navier-Stokes equations over the flow depth. In the past researches [2],
the shallow water equations can be used to describe various applica-
tions in ocean and hydraulic engineering, such as the tidal oscillations
in coastal and estuary water regions, open-channel flow in natural
rivers and prismatic channels, flood waves generated by extreme
storms or failure of dams, etc. The shallow water equations are a
hyperbolic system of first-order nonlinear partial differential equations,
so it is non-trivial to develop a numerical model to accurately and
efficiently obtain solutions of the shallow water equations. In the past
decades, many numerical schemes have been proposed to solve the
shallow water equations, such as the finite difference method (FDM)
[3,4], the finite volume method (FVM) [5,6], the finite element method
(FEM) [7], the radial basis functions (RBFs) collocation method

(RBFCM) [8,9], the local RBFs differential quadrature method
(LRBFDQM) [10], etc. In this paper, we proposed a novel meshless
scheme for numerical solutions of the shallow water equations without
the need for time-consuming mesh generation and numerical quad-
rature.

Since the shallow water equations are a hyperbolic system of first-
order nonlinear partial differential equations, the information of
characteristic and the correct directions of wave transmission are quite
important to numerical simulation. On the basis of the characteristic
theory, Moretti [11] proposed an explicit FDM, which is called the
λ-scheme, to accurately analyze the hyperbolic system of Euler
equations of compressible flow. The wave transmission and their
directions are properly present in the λ-scheme. After the successful
combination of the FDM and the characteristic theory in the λ-scheme,
Gabutti [12] improved the λ-scheme and numerically compared his
proposed explicit finite difference scheme with other methods. The
Gabutti scheme [12] is accomplished by diagonalizing and splitting the
coefficient matrices of the non-conservation form of the shallow water
equations. Therefore, the information of characteristic is described in
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each part of positive and negative eigenvalues of the coefficient
matrices. Once the shallow water equations are transformed to the
characteristic form, the predictor-corrector method, which includes
three sequential steps, is adopted for the integration along time axis.
Because the Gabutti scheme can accurately capture the information of
wave transmission, Fennema and Hanif Chaudhry [3,13] adopted the
Gabutti scheme to solve the Saint-Venant equation and the shallow
water equations. Several examples of one-dimensional and two-dimen-
sional hydraulic problems are present in their papers and the Gabutti
scheme can accurately acquire satisfactory numerical results. Since
both of the λ-scheme and the Gabutti scheme considered the char-
acteristic theory in the coefficient matrices, these two schemes
belonged to the category of split-coefficient matrix methods [2,3]. In
the proposed meshless scheme, the concept of the split-coefficient
matrix methods is adopted to transform the governing equations in
order to include the information of wave transmission. Then, the
generalized finite difference method (GFDM) and the second-order
Runge-Kutta method are adopted for spatial and temporal discretiza-
tions, respectively.

With the rapid developments of computer software and hardware in
the past half century, some mesh-based numerical methods for spatial
discretization have been developed and applied to various engineering
problems, such as the FDM, the FEM, the FVM, etc. In order to get rid
of the time-consuming tasks of mesh generation and numerical
quadrature in the mesh-based methods, many so-called meshless/
meshfree methods are proposed, such as the method of fundamental
solutions [14–16], the Trefftz method [17,18], the singular boundary
method [19,20], the GFDM [21–28], the RBFCM [8,9], the local
RBFCM [29,30], the LRBFDQM [10], etc. Among them, the GFDM is
one of the most-promising domain-type meshless methods. While the
GFDM is used to numerically analyze boundary-value problems, only
two sets of randomly-distributed nodes are required. One is the set of
boundary nodes and the other is the set of interior nodes. Once the
spatial coordinates of theses nodes are obtained, the spatial derivatives
at every node can be expressed as linear combinations of nearby
function values with different weighting coefficients by using the
moving-least squares method. To enforce the satisfactions of governing
equations at every interior node and boundary conditions at every
boundary node can yield the final sparse system of algebraic equations.
The numerical solutions can be obtained by solving this system of
algebraic equations. From the above-described numerical procedures
of the GFDM for boundary value problems, it can be found that the
GFDM is truly free from mesh generation and numerical quadrature.
Besides, the concept of star in the GFDM can avoid the problems of ill-
conditioning matrices, which usually appear in other meshless meth-
ods. So, it is obvious that the GFDM remains the advantages from both
of the mesh-based methods and the meshless methods.

The explicit formulas of the GFDM are proposed by Benito et al.
[21] in 2001 and then Gavete et al. [22] numerically investigated some
factors of the GFDM. Since the GFDM is originated from the classical
FDM and keeps the merits of mesh-based methods and meshless
methods, it has been, in the past few years, applied to analyze various
problems, such as parabolic and hyperbolic equations [23], the obstacle
problems [24], the inverse problems [25,26], the density-driven
groundwater flows [27], sloshing phenomenon [28], etc. From these
GFDM-related researches, it is apparently revealed that the GFDM has
great potential to be used for realistic engineering problems. Thus, in
this paper, we proposed a meshless numerical scheme, based on the
GFDM, to accurately and efficiently solve the shallow water equations.
In addition, a new way to determine the shape of star in the GFDM is
proposed in this paper in order to capture the correct transmission of
characteristic.

The proposed meshless numerical scheme is the combination of the
split-coefficient matrix method, the GFDM and the second-order
Runge-Kutta method. At the beginning, the shallow water equations
are transformed under the consideration of the split-coefficient matrix

method. The coefficient matrices are decomposed according to the
signs of eigenvalues, which denote the directions of wave transmission.
Then, the GFDM and the second-order Runge-Kutta method are
responsible for spatial and temporal discretization, respectively. Since
the directions of transmission wave are marked in the coefficient
matrices of partial differential equations, the conventional method to
determine the shape of star in the GFDM is no longer suitable. For
every node, a star is formed by choosing the nearest nodes, so the shape
of star in the GFDM conceptually resembles to a circular disk for a two-
dimensional problem and the considered node is usually located at the
center of the star. In order to include the direction of characteristic, we
proposed a new way to determine the shape of star. In the proposed
method, if the wave is transmitted from left-hand side, the shape of star
is only the left half disk. One the other hand, if the wave is transmitted
from right-hand side, the shape of star is only the right half disk. The
similar procedures can be extended to waves from the upward and
downward directions. Although it might take more computational cost
to calculate the weighting coefficients due to different shapes of star in
the beginning of simulation, the information of wave transmission can
be accurately analyzed during the entire simulation. To the best of the
authors’ knowledge, it is the first time that the shape of star at every
node in the GFDM is modified under the consideration of transmission
of characteristic.

After the introduction of motivation of this study and the discus-
sions of relevant researches, the governing equations and the proposed
numerical procedures are described in the next sections. In the section
of numerical results and comparisons, several examples are provided to
verify the merits of the proposed meshless numerical method and the
numerical results are compared with other solutions. Finally, some
conclusions and discussions will be drawn according to the results and
comparisons.

2. Shallow Water Equations

In the realm of hydraulic, ocean and atmospheric engineering, the
shallow water equations can be used to explain various engineering
applications. The shallow water equations can be derived from the
Navier-Stokes equations by using vertically-averaged quantities. The
non-conservative form of the shallow water equations are depicted as
follows [2,3]:
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In Eqs. (1) and (2), h denotes the water depth. u and v are the
vertically-averaged velocity components in x and y directions. g is the
acceleration due to gravity. S x0 and S y0 are channel bottom slope in the x
and y directions. Sfx and Sfy are the slopes of the energy grade lines in
the x and y directions and can be demonstrated as:
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and
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h
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4/3 (4)

where n is the Manning's roughness coefficient. H h z= + denotes the
water level and z is the bed elevation.

The matrices P and H in Eq. (1) have very important property,
related to the information of characteristic, and their eigenvalues are
given by
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