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A B S T R A C T

While pseudospectral (PS) methods can feature very high accuracy, they tend to be severely limited in terms of
geometric flexibility. Application of global radial basis functions overcomes this, however at the expense of
problematic conditioning (1) in their most accurate flat basis function regime, and (2) when problem sizes are
scaled up to become of practical interest. The present study considers a strategy to improve on these two issues
by means of using hybrid radial basis functions that combine cubic splines with Gaussian kernels. The
parameters, controlling Gaussian and cubic kernels in the hybrid RBF, are selected using global particle swarm
optimization. The proposed approach has been tested with radial basis-pseudospectral method for numerical
approximation of Poisson, Helmholtz, and Transport equation. It was observed that the proposed approach
significantly reduces the ill-conditioning problem in the RBF-PS method, at the same time, it preserves the
stability and accuracy for very small shape parameters. The eigenvalue spectra of the coefficient matrices in the
improved algorithm were found to be stable even at large degrees of freedom, which mimic those obtained in
pseudospectral approach. Also, numerical experiments suggest that the hybrid kernel performs significantly
better than both pure Gaussian and pure cubic kernels.

1. Introduction

Pseudospectral (PS) methods are highly accurate and higher-order
numerical methods, which use polynomials as basis functions. In two
or higher dimensions, PS method tend to be limited in terms of
geometric flexibility [1]. A typical variant of PS methods is Chebyshev
pseudospectral method (CHEB-PS), which uses Chebyshev polyno-
mials as basis functions. In order to make the PS method geometrically
flexible, Fasshauer [2] proposed the application of infinitely smooth
radial basis functions (RBFs) in pseudospectral formulation and
interpreted the combined approach as meshless radial basis-pseudos-
pectral (RBF-PS) method. Gaussian RBF is one such infinitely smooth
RBF, which results in a positive definite system ensuring uniqueness in
the interpolation. It is often found in the application of smooth RBFs
that scaling the radial kernel by reducing the shape parameter to a
smaller value, i.e., making it “flat” reduces the error in the approxima-
tion, as the “flat” limit of infinitely smooth RBF converges to a
polynomial interpolant [3,4]. Larsson and Fornberg [5] have shown
that it is possible to get even more accurate results with Gaussian RBF
in the “flat” range, i.e, just before it converges to polynomial inter-

polants. Although global RBF methods are relatively costly because of
the full and dense matrices arising in the linear system, their accuracy
and convergence makes them desirable, especially for problems in solid
mechanics. In recent years, RBF-PS method has been effectively
applied to computational mechanics [6–8], nonlinear equations [9],
and thermal convection in 3D spherical shells [10], etc. Application of
an infinitely smooth RBF in pseudospectral mode, however, brings an
inherent limitation, as the global approximation of RBFs gets severely
ill-conditioned at higher degrees of freedom as well as at low shape
parameters. Such limitations constraint the well-posedness of the RBF-
PS algorithm only to few nodes in the domain with relatively large
shape parameter range. Typical quantification of such limitations can
be found in [2], where the RBF-PS algorithm was found to be well-
posed upto 24×24 nodes for 2D Helmholtz's equation and 18 nodes for
1D transport equation.

To deal with the ill-conditioning in RBF interpolation, Kansa and
Hon [11] performed numerical tests using various tools, viz., block
partitioning or LU decomposition, matrix preconditioners, variable
shape parameters, multizone methods, and node adaptivity. Other
major contributions to deal with the mentioned problem are: a direct
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solution approach [12], accelerated iterated approximate moving least
squares [13], random variable shape parameters [14], Contour-Padé
and RBF-QR algorithms [15], series expansion [16], and regularized
symmetric positive definite matrix factorization [17], RBF-GA [18],
Hilbert-Schmidt SVD [19], Weighted SVD [20], use of Laurent series of
the inverse of the RBF interpolation matrix [21], and RBF-RA [22], etc.
An alternative approach is radial basis finite difference (RBF-FD)
method, which is a local version of RBF-PS method [23–26]. The only
significant difference between RBF-PS and RBF-FD implementation is
that instead of using all the nodes, later uses only few neighbour nodes
for construction of differential matrices.

Recently, Mishra et al. [27] proposed novel radial basis functions by
hybridizing Gaussian and cubic kernels, which could significantly
reduce the ill-conditioning problem in scattered data interpolation.
This hybrid kernel utilizes optimal proportion of the Gaussian and
cubic kernel, which correspond to the defined optimization criterion. In
this paper, we propose a well-conditioned radial basis-pseudospectral
scheme for numerical approximation of PDEs, by incorporating hybrid
Gaussian-cubic kernels as basis functions. We establish both the
convergence and stability of this improved scheme, through several
numerical examples including numerical approximation of time-in-
dependent and time-dependent PDEs. Hereafter, in this work, we will
call this improved approach as hybrid radial basis function-pseudos-
pectral approach (HRBF-PS).

Rest of the paper is structured as follows. We introduce the hybrid
RBF in Section 2, and the global particle swarm optimization algorithm
for selecting the parameters of this hybrid RBF in Section 3.
Construction of differentiation matrices, and the RBF-PS scheme for
numerical solution of PDEs have been explained in Section 4. Finally
we perform numerical tests by solving Poisson, Helmholtz, and
transport equations using the improved RBF-PS method and exhibit
the improvements, observed due to hybrid RBF over Gaussian and
Cubic RBFs, in Section 5, followed by the conclusion. In Appendix A,
we explain the particle swarm optimization algorithm and its applica-
tion in the contexts of numerical solution of PDEs with meshless
methods.

2. Hybrid Gaussian-cubic RBF

Radial basis functions were proposed by Hardy [28] for fitting
topography on irregular surfaces using linear combination of a single
symmetric basis functions, which was later found to have better
convergence than many available approaches for interpolation [29].
Some commonly used RBFs have been listed in Table 1. First
application of RBFs for numerical solution of differential equations
was proposed by Edward Kansa in 1990 [30]. Since RBFs do not
require to be interpolated on regular tensor grids, Kansa's method did
not require“mesh”, therefore, it was termed as a meshless method.
Infinitely smooth RBFs like Gaussian have been proven to provide
invertible system matrix in such meshless methods. However, for small

shape parameters, as well as large number of nodes in the domain,
Gaussian RBF leads to solving an ill-conditioned system of equations.
Cubic RBFs on the other hand, are finitely smooth radial basis
functions, which, unlike Gaussian RBF, do not have any shape
parameter. However, use of cubic RBF for shape function interpolation
in meshless methods involves the risk of getting a singular system, for
certain node arrangements. Recently, a hybrid RBF [27], by combining
Gaussian and the cubic kernels, has been proposed which could utilize
certain features of both the RBFs depending on the problem type under
consideration, as given by

ϕ r αe βr( ) = + ,r−(ϵ ) 32
(1)

where, ϵ is the shape parameter of the radial basis function, which is a
relatively new notation for the same. One advantage of using this new
conventions is that all the RBFs depend on the shape parameter in a
similar manner. It should be noted that there is another parallel
convention for the shape parameter, which is commonly represented as
‘c’ [31]. The conversion from old to new convention can be done by
setting c = 1/ϵ2 2 [32]. The weight coefficients α and β control the
contribution of Gaussian and cubic kernel in the proposed hybridiza-
tion depending upon the problem type.

3. Parameter optimization

Since the shape parameter affects both the accuracy and stability of
algorithms involving RBFs, finding its optimal value has been a critical
issue in radial basis interpolation and its application in meshless
methods [33–35]. The hybrid kernel, presented in this study, contains
three parameters, i.e., ϵ, α, and β, an optimal combination of which will
ensure the optimum convergence and stability of the associated
algorithm. Particle swarm optimization (PSO) is a frequently used
algorithm to decide the shape parameter in RBF network and its
application in machine learning algorithm [36,37], however in context
of numerical approximation of PDEs with meshless methods, it is
generally decided with ad-hoc methods like solving the problem with
various values of the shape parameter and visualizing the root mean
square (RMS) error against it. This approach works only if the exact
solution of the problem is known, which in practical cases, is often
unknown. For such cases, in the context of scattered data interpolation,
Rippa [38] proposed a statistical approach using leave-one-out-cross-
validation (LOOCV), which later got generalized for numerical solution
of PDEs, by Fasshauer [39]. Here we use a global particle swarm
optimization algorithm, to decide the optimal values of the parameters
of the hybrid kernel. We test two different objective functions: (1) RMS
error, when the exact solution is known and (2) LOOCV criterion, when
the exact solution is not known. Algorithm (1), explains the process of
computing the objective function using LOOCV. Here ck is the kth
coefficient for the interpolant on “full data” set and Akk

−1 is the kth

diagonal element in the inverse of the interpolation matrix for “full
data”. A detailed discussion about the application of particle swarm
optimization in this context has been given in Appendix A.

Algorithm 1. LOOCV for computing the objective function for
parameter optimization. This algorithm uses the interpolation matrix,
which is computed to construct various differentiation matrices in
RBF-PS.

1: Fix a set of parameters α β[ϵ, , ]
2: for all the N collocation points, i.e.,k=1,…,N do
3: if using Rippa's simplified approach [38] then
4: Compute the error vector ek as

e c
A

= .k
k

kk
−1 (2)

5: else
6: Compute the interpolant by excluding the kth point as

Table 1
Some frequently used radial basis functions (radial kernels) and their mathematical
expressions.

Kernel Mathematical expression

Multiquadratic (MQ) r(1 + (ϵ ) )2 1/2

Inverse multiquadratic (IMQ) r(1 + (ϵ ) )2 −1/2

Gaussian (GA) e r−(ϵ )2

Polyharmonic Spline (PHS) ⎧⎨⎩
r ln r m
r m

( ) = 2, 4, 6, …
= 1, 3, 5, …

m

m

Wendland's (Compact Support) r r(1 − ϵ ) (4ϵ + 1)+
4
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