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A B S T R A C T

In this paper, a new family of single-parameter exponentially gradient elements (EG-elements) are introduced,
which can be used in various numerical procedures such as boundary and finite element methods. These
elements have the ability to accurately interpolate the unknown values in regions, where either high gradient or
singularity of the unknown field occurs. The shape functions of two-dimensional EG-elements are high gradient
at either a corner of the element or at an edge of the element. Another advantage of this element is that the
regular quadratic shape functions are obtained as a special case of EG-elements by adjusting the single
parameter of the element, which allows this element to be used as regular Lagrange quadratic element, where it
is appropriate. Some mixed boundary value problems are solved with the use of EG-elements in a boundary
element program to show the capability of these elements for capturing the solution with less number of
elements and higher accuracy.

1. Introduction

Many kinds of Mixed Boundary Value Problems (MBVP) are
encountered in engineering mechanics [1–5] and potential theory
[6,7], where the natural boundary conditions are discontinuous and
thus the derivatives of the solution for the MBVP is singular at
discontinuities. Contact problems, crack investigation [7], scattering
problems and problems in fracture mechanics are some examples in
mechanics, and electrostatic potential of plates charged to a prescribed
potential or electrostatic field due to two parallel plates are examples in
potential theory [6]. When an analytical solution is sought for this type
of MBVP, a very precise attention should be paid, and when it is
considered to be solved numerically, some difficulties are encountered
both in reproducing the singularities of the problem and in numerical
integrations [7,8]. Because of these issues, mathematicians and en-
gineers are interested in this kind of problems. In addition, the
numerical research group is also interested in the phenomenon.
There exist a few researches for either numerical integration of singular
functions or numerical solutions for singular integral equations [7–11],
many of which proposed to express the unknown function in terms of
linear combination of some known functions, such as Chebyshev [9]
and Jacobi [12,13] series functions. When one expresses an unknown
function, say f , in the form of linear combination of some other known
functions in its entire domain, where both regular and singular

behavior of f are seen, it should be noticed that a large number of
the known functions should be used to capture all the behavior of f . On
the other hand, if f is expressed in terms of some function in a subset
of its domain, then a small number of the known functions may be
adequate. Polynomials from constant to higher degree such as 3rd or
4th degree are used in ordinary finite element method, called Lagrange
elements. Since, these elements due to their shape functions are
naturally smooth, they cannot capture the singular or high gradient
behavior present in the solution of various MBVPs appropriately and a
large number of elements are needed to have a poor approximation for
the solution. Pak and Ashlock [14] introduced a family of two-
parameter power based adaptive elements which can be adjusted to
capture both regular and high-gradient variations of different func-
tions. Although the shape functions they derived can be used for
numerical analysis of some high-gradient functions, however, a com-
bination of two real parameters should be selected for adjusting the
behavior of the element. On the other hand, the complicated form of
the kernel function used in deriving the shape functions, makes them
less attractive for applications.

In this work, we are going to introduce a new one-parameter family
of shape functions with an adaptive behavior to capture both regular
and singular behavior of different phenomena. Since, integration of
singular functions needs some special attention, nonsingular, however
high gradient shape functions are used in this new element. To this
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end, an exponential function is used as the kernel function of the new
element. Since, both the exponential function and its derivatives are
linearly dependent, some extra terms are added to the shape functions
to make a more complete basis, in the sense of vector space [see
[15,16]], for the new element. On the other hand, since the main part
of the gradient of the new elements is expressed by the exponential
function, we call them the Exponentially Gradient-elements (EG-
elements). The EG-elements in this paper are introduced in such a
way that their behavior from regular to very high gradient can be
controlled with only one parameter, and the so called Lagrange element
can be derived as a special case of the EG family of elements. In this
way, any EG-element introduced in this paper will be an adaptive
element. Some two- and three-dimensional contact boundary value
problems are numerically solved with the application of EG family of
elements in a boundary element method to show the power of EG-
family line and surface elements.

2. Basis for construction of EG-family elements

A linear vector (function) space is a set containing some vectors
(functions) that except some other properties satisfy two main axioms,
which are closure under addition and closure under multiplication by
real numbers [see [15,16]]. A Finite Dimensional Linear Vector Space
(FDLVS) may be a subset of a linear vector (function) space that is
spanned on a basis with finite members. An arbitrary vector, say u, can
be exactly expressed in an FDLVS if there exists a basis for the FDLVS
containing u, otherwise, u cannot be exactly expressed as a linear
combination of the members of the FDLVS, and thus any linear
combination of the members of FDLVS is an approximation for u.
Any smooth function can be expressed in an FDLVS that spanned on a
basis containing smooth functions, however, a high gradient or singular
function cannot be well expressed on the domain of interest in an
FDLVS that is spanned on a basis containing only smooth functions
with low gradient behavior. In this case, high gradient functions are
needed to make a good approximation for the singular functions. There
are many cases in computational mechanics that high gradient or
singular functions are encountered. Thus, an FDLVS spanned on a
basis containing high gradient functions is needed to handle the
singular functions. On the other hand, the functions in the basis of
an FDLVS should be continuous on the domain of interest to be a place
for making good approximations for continuous functions. In this
paper, we are going to present an FDLVS spanned on a basis containing
only three functions with an arbitrary gradient, where the gradient is
adjusted with only one parameter. This FDLVS is used for making a
new three-node finite element used in one-dimensional boundary value
problems. With the use of standard methods, the two-dimensional high
gradient elements are made. The Lagrange three-node one-dimen-
sional element will be a special case of the proposed element.

3. One-dimensional EG-elements

A family of single parameter Exponentially-Gradient (EG) shape
functions is introduced, which can be utilized for making one- to three-
dimensional finite and boundary elements. The shape functions are
adjusted in such a way that they can vary from regular to very high
gradient behavior. To do so, first the following interpolation function is
presented for derivation of the shape functions of a three-node one-
dimensional element:

f s m A Bs C s s( ; ) = + + ( + 1)
2

em s( −1)
(1)

where s is the parent coordinate in the domain [ − 1, 1] (see Fig. 1), A,
B and C are constants, which will be derived from the nodal values of
the variable being interpolated and m is the sole EG-parameter that can
be chosen in such a way that a desired behavior is obtained from the

function f s m( ; ). We call the term es s m s( + 1)
2

( −1) in the interpolation
function f s m( ; ) as the EG-kernel function, which can be localized and
sharpened toward the EG end of the parent domain via the m
parameter, as can be seen from Fig. 1. As is clear from the formulation
of the EG-kernel function and as seen from Fig. 1, the EG-kernel
function is smooth everywhere for different values of m, however, the
larger the value of m the higher the gradient of the kernel function is
achieved.

If the usual nodal requirements for an element with three nodes are
imposed, the following equations are obtained:
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where f1, f2 and f3 are the nodal values of the variable being
interpolated. A simultaneous solution of these three equations gives
the constants A, B and C in terms of f1, f2 and f3 as follows:

A f B f f C f f f= , = − , = − 2 +2 2 1 1 2 3 (3)

Substitution of Eq. (3) into Eq. (1) makes it possible to rearrange
the interpolated function in the form of
f s m N s m f N s m f N s m f( ; )= ( ; ) + ( ; ) + ( ; )1 1 2 2 3 3 where N s i( ), ( = 1, 2, 3)i
are the EG-shape functions for a 3-node one-dimensional EG-element
obtained as
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The EG-shape functions should be selected in such a way that they
can make a basis for an FDLVS containing completely regular to very
high gradient functions defined on a finite subset of real numbers. In
this way, one can use linear combinations of those shape functions to
describe any regular to very high gradient functions defined on the
subset. Of course, the shape functions should possess the delta function
property, the partition of unity property, C°-continuity, and consis-
tency [17] conditions. The delta function property implies that the
shape functions should have unit values at their home node and vanish
at remote nodes of the element, while the partition of unity property
ensures that the shape functions should sum to unity. The C°-
continuity at the subset makes sure of the continuity of any function
directly expressed by the shape functions, and consistency condition
requires that the interpolation function represents exactly any poly-
nomial function up to some order. Because of analyticity of the
exponential function, the shape functions used in the EG-elements
are smooth with any value of m, however, their gradient is controlled by
the value of m. Examples of the shape functions are shown in Fig. 2 for
a wide range of the parameter m. As it can be seen from the display,
they exhibit exactly the kind of localizability and adaptability that are
lacking in current shape function ensembles. An important property
that can be observed is that the shape functions of the one-dimensional
Lagrange quadratic element can be easily reproduced by choosing

Fig. 1. The EG-kernel for different values of m.
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