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A B S T R A C T

This paper shows a regularization scheme applied to the recently developed Direct Interpolation Technique with
Radial Basis Functions (DIBEM) for elimination of the singularity that exists in the kernel of the domain
integral. As a simple interpolation, the kernel is approximated directly in DIBEM; however, it is composed of the
fundamental solution, distinct positions between the source points and the field points being thus required.
Through the proposed regularization scheme, both sets of source points and field points, as well as base points
used for interpolation with radial functions may have the same coordinates. This facilitates the data entry and
also the implementation of several operational steps of the DIBEM formulation. Solution of eigenvalue problem,
generated by the Helmholtz Equation, is here chosen to exemplify the efficacy of the regularization procedure,
but many other problems can thus be addressed, particularly the diffusive-advective problem, that has higher
level of singularity in the interpolated kernel.

1. Introduction

The direct interpolation boundary element method (DIBEM) is a
new technique, suitable for solving partial differential equations whose
operators are not self-adjoint [1] or then cases in which the deduction
of the associated fundamental solution [2] is very difficult.

It is an alternative to the well known Dual Reciprocity Technique
(DRBEM) [3]. Some examples of application are cases which involve
sources, domain actions, diffusive-advective problems, inertia forces
and other cases.

The DIBEM procedure has been successfully applied to Poisson
problems [4] and Helmholtz problems [5]. This technique applies an
approximation procedure using radial basis functions [6,7] to domain
integrals comprised to non self-adjoint kernels, that is relatively similar
to that of DRBEM; however, it is yet simpler, more general and more
robust, since the formulation proposed here does not require construc-
tion of two auxiliary matrices by multiplying classic boundary element
matrices H and G.

Unlike the DRBEM, the entire kernel of the domain integral is

interpolated, including the fundamental solution. Thus, the coinci-
dence in positions of source points ξ and field points X produces
singularity. To avoid this, preliminary DIBEM formulation establishes
that the coordinates of source points and field points must be taken
distinctly, what means two sets of data coordinates entry.

The proposal here is to use an idea based on the concept of
Hadamard [8] to eliminate the singularities, making both the DIBEM
implementation process and data entry faster, since field points and
source points can coincide. Obviously, it is necessary to check the
quality of the results, since the original procedure, performed well.

2. Basic formulation

The Helmholtz Equation can be interpreted as a simplification of
the Acoustic Wave Equation [9] given by:

U t
k

U tX X∇ ( , )= 1 ̈ ( , )2
2 (1)

In Eq. (1) k is the velocity of propagation of the acoustic wave and
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U(X,t) is the spatial response of the system to any excitations with
generalized modal content. Thus, in the particular case in which one
seeks the response produced in the system by a variable excitation
whose frequency ω is known, the potential U(X,t) is a response
composed for specific vibrational content, in a following form:

U t u eX X( , ) = ( ) iωt− (2)

In Eq. (2),“i” is the imaginary unit and u(X) is the stationary
amplitude spatial response of the system to the harmonic excitation of
frequency ω. Substitution of Eq. (2) in Eq. (1) results in a model that
the potential u(X) varies from point-to-point on the domain field,
comprising the Helmholtz Equation, that is:

u ω
k

uX X∇ ( ) = − ( )2
2

2 (3)

Integrating Eq. (3) over the physical domain Ω(X), using an
auxiliary fundamental solution u*(ξ;X), as shown below, the following
equation results:

∫ ∫u u ξ dΩ ω
k

u u ξ dΩX X X X∇ ( ) *( ; ) = − ( ) *( ; )
Ω Ω

2
2

2 (4)

In the DIBEM procedure, the fundamental solution does not
depend of the frequency, since it is related to the Laplace's problem.
This simplification allows the DIBEM to generate an explicit inertia
matrix, as occurs with the Finite Element Method [10] and the DRBEM
[11], at the expense of a loss of representation capacity of the
functional space generated in the BEM integral formulation.

Thus, the basic BEM approach to the Laplacian operator is
maintained and the application of integration by parts and the
Divergence Theorem on Eq. (4), operations well documented in
literature [12], gives the following integral expression:

∫ ∫

∫

c u u q dΓ q u dΓ

ω
k

u u dΩ

ξ ξ X ξ X X ξ X

X ξ X

( ) ( ) + ( ) *( ; ) − ( ) *( ; )

= ( ) *( ; )

Γ Γ

Ω

2

2 (5)

In Eq. (1), u(X) is the scalar potential and q(X) is its normal
derivative; u*(ξ,X) is the fundamental solution for the Laplace's
equation and q*(ξ,X) is its normal derivative;. The coefficient c(ξ)
depends on the position of point ξ in the physical domain Ω(X)+Γ(X),
and if the point is located on the boundary Γ(X), it also depends on its
smoothness [13].

The DIBEM can be used in other relevant problems that belong to
the Generalized Scalar Field Theory [14]. The typical BEM approach to
the Laplacian operator is maintained, i.e., the fundamental solution of
stationary diffusive problem is used as an auxiliary function.

Using DIBEM, the complete kernel of the domain integral is directly
interpolated using radial basis functions according to Eq. (6):

u uX ξ X X X( ) *( ; ) ≅ α F ( ; )i
ξ i i (6)

Because the interpolation functions Fi(Xi, X) belong to the class of
radial functions, their argument are composed of the Euclidean
distance r(Xi, X), which characterises the positions of the base points
Xi relative to generic domain points X.

It should be highlighting that the domain integral on the right-
hand-side of Eq. (5) is regular, since the integral of a logarithm
function is an improper convergent integral. However, a logarithm
function tends to infinity when its argument tends to zero. This is a
fundamental aspect regarding the DIBEM, since the kernel is com-
prised by fundamental solution and the approximation by linear
combination of radial basis functions is done prior to performing the
domain integration. So, it is necessary to avoid position coincidence
between field points and base points.

After the discretisation process, these points X are used to generate
the node points, at which the u(X) potential is calculated. For each
source point ξ, the interpolation given by Eq. (6) corresponds to

scanning all points Xi in relation to domain points X, weighted by the
coefficients ξαi. Hence, the ξαi coefficients can be obtained by solving a
system of algebraic equations, as shown ahead.

Similarly to DRBEM, the proposed method also uses a primitive
interpolation function Ψi(Xi, X); thus, the integral of the source term
expressed by the right-hand-side of Eq. (5) becomes the following:

∫ ∫
∫ ∫

α F dΩ α ψ dΩ

α ψ n dΓ α η dΓ

X X X X

X X X X X

( ; ) = ( ; ) =

( ; ) ( ) = ( ; )
Ω

ξ
i

i i
Ω i

ξ
jj
i i

Γ i
ξ

j
i i

j i
ξ

Γ
i i

,

, (7)

The boundary transformation represented in Eq. (7) was tested
yielding satisfactory results in preliminary applications that consisted
of calculations of volumes and image of functions using several kind of
functions, two of them being paraboloid and Franke [15]. Also
simulations were performed with the BEM to solve Poisson problems;
some of which included interpolation based on radial basis functions
with compact support [16].

3. Regularization procedure

The regularization scheme avoids elegantly the coincidence between
field and basis points, without resorting to a computational algorithm
that simply prevents the coincidence of these points, since it would
result in impaired quality of the interpolation.

Hadamard regularization concept is usually applied in a different
context [17], nevertheless its idea can be used here to exclude the
singularity in Eq. (6) when the positions of source and field points are
coincident. Thus, the following procedure is applied to the right-hand-
side of Eq. (5):

∫ ∫

∫ ∫

∫

c u u q dΓ q u dΓ

ω u u dΩ u u dΩ

ω u u dΩ

ξ ξ X ξ X X ξ X

X ξ X ξ ξ X

ξ ξ X

( ) ( ) + ( ) *( ; ) − ( ) *( ; ) =

{ [ ( ) *( ; )] − [ ( ) *( ; )] }

+ [ ( ) *( ; )]

Γ Γ

k Ω Ω

k Ω

1 2

1 2

2

2 (8)

The two first integrals on the right-hand-side of Eq. (8) are
approximated together as follows:

∫ ∫
∫

k
ω u u X dΩ u u X dΩ

k
ω α F dΩ

X ξ ξ ξ

X X

1 { [ ( ) *( ; )] − [ ( ) *( ; )] }

≈ 1 { ( ; ) }

Ω Ω

Ω

ξ
i

i i

2
2

2
2

(9)

Using the DIBEM transformation, given by Eq. (7), one has:

∫ ∫
∫ ∫

c u u q X dΓ q u X dΓ

ω α η dΓ ω u u X dΩ

ξ ξ X ξ X ξ

X X ξ ξ

( ) ( ) + ( ) *( ; ) − ( ) *( ; ) =

{ ( ; ) } + [ ( ) *( ; )]
Γ Γ

k i
ξ

Γ
i i

k Ω
1 2 1 2
2 2 (10)

For convenience, temporarily the second term on the right-hand-
side of Eq. (10) should be ignored. The mathematical treatment and
discretisation of the remaining terms are given in detail in a previous
paper [5], where the following matrix system is achieved:
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Each coefficient Aξ is given explicitly by:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⎟A N N N

α

α
= ( .... ) ...ξ m

ξ

m
ξ

1 2
1

(12)

In turn, the αξ can be calculated using the basic interpolation
equation, that is:

F F F uα Λ α Λ[ ] = [ ] [ ][ ] = [ ] [ ][ ]ξ 1 ξ 1 ξ− − (13)

Thus, in this case:

C.F. Loeffler, W.J. Mansur Engineering Analysis with Boundary Elements 74 (2017) 14–18

15



Download	English	Version:

https://daneshyari.com/en/article/4966023

Download	Persian	Version:

https://daneshyari.com/article/4966023

Daneshyari.com

https://daneshyari.com/en/article/4966023
https://daneshyari.com/article/4966023
https://daneshyari.com/

