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A B S T R A C T

A rigorous analytical study of the global error of panel methods is presented. The analysis is performed for a
wide variety of body shapes and different panel geometries to fully understand their effect on the convergence of
the method. In particular, we study the global error associated with panel methods applied to thin or thick
bodies with purely convex parts or with both convex and concave parts, and with smooth or non-smooth
boundaries. Most previous studies focused on the analysis of local error, considering only the influence of the
nearest panels and excluding the rest. The difference is shown to be appreciable in many configurations.
Generally, there is a lack of consensus concerning the order of magnitude of the error for panel methods even in
the simplest case with flat panels and a constant distribution of doublets along them. This paper clarifies
apparently different or inconsistent results obtained by other authors.

1. Introduction

The importance of the Laplace equation in aerodynamics (and
many other fields of science) means that a great deal of effort has been
directed toward developing analytical and numerical methods for its
solution. Among the most popular numerical schemes are panel
methods, or boundary element methods (BEMs) [1,2], which reduce
the problem of finding the velocity potential for the entire fluid to the
calculation of this potential on the surface of the body itself. Thus, the
dimension of the problem is reduced from three to two (or, in the case
of two-dimensional flows, from two to one) making BEMs very
attractive for their low computational cost. Since the pioneering work
of Hess and Smith there have been numerous publications and many
numerical codes based on panel methods [3–14]; among these we
emphasize the reviews of Hess [9], Erickson [10] and the book of Katz
and Plotkin [12]. Boundary element methods are an active field of
study, especially within the engineering community, with new applica-
tions being developed rapidly.

The panel method based on Green's formula was first introduced in
the work of Morino and Kuo [4], in which the primary unknown was
the velocity potential. There are two main formulations both based on
Green's formula: Neumann and Dirichlet [12]. The Dirichlet formula-
tion solves the Laplace equation numerically and provides the velocity
potential. However, with the Neumann formulation, only differences of
potential are obtained. The Dirichlet formulation is more stable and

more suitable to numerical computation than the Neumann formula-
tion and leads to numerical errors of a smaller order of magnitude.

Initially, panel methods were developed using flat panels and a
constant [3,5] or linear [6] distribution of singularities on each panel.
Beginning in the 1970's however, singularity distributions were also
modeled (on each panel) using quadratic [4,15,16] or cubic [17]
functions. In a similar fashion, the panels themselves, which were
initially taken to be flat, were generalized to include non-planar
geometries [4,15]. However, in the last several decades many numer-
ical codes returned to the original low-order approach, as indicated in
[12]. The main reason for this is the more complicated implementation
of higher-order methods compared to lower-order ones [11].

A lot of studies have addressed the question of error in these
methods. Some carry out a numerical analysis of the error by
comparing a numerical solution with a known analytical solution
[18–20]. Others perform a local analysis of the error by using small
curvature expansions to obtain local approximations to the velocity and
potential integrals [21–24]. However, to the best of our knowledge, a
rigorous analytical study of the global error of these methods that
applies to thin or thick bodies, with purely convex parts or with both
convex and concave parts, and with smooth or non-smooth boundaries,
has not yet been performed. In this paper, we present such an analysis
for a wide variety of body shapes and try to understand the effect of the
body and panel geometry on the convergence of the method. This
allows us to clarify several important questions about the convergence
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rate for the velocity potential since, even for the simplest case of flat
panels with a constant distribution of doublets along them, there is a
lack of general consensus. Depending on the airfoil geometry, the panel
geometry and the discretization, apparently different or inconsistent
results are obtained by other authors, and differences between theore-
tical and numerical results exist as well [18–20,24,25].

This work presents a formal analytical and numerical analysis of the
asymptotic global error in panel methods when applied to a Dirichlet
formulation [12] for different body geometries. In addition, an analysis
of the influence of the panel geometry on the global error is performed.
The work is organized as follows. In Section 2 a brief description of
panel methods is given. In Section 3 the global error analysis is
performed analytically. In Section 4 the details of the error estimation
are presented. Section 5 considers the numerical and analytical
solutions for different body geometries in order to compare the actual
and predicted errors in each case. Finally, in Section 6 the main
conclusions are given.

2. Brief description of the panel method

The velocity potential around a body of known shape submerged in
a potential flow satisfies the irrotational, incompressible continuity
equation in the body's frame of reference [12]:

Φ∇ = 0.2 (1)

Boundary conditions require a vanishing normal velocity component
on the body surface,

nΦ∇ · = 0, (2)

and a constant velocity in the far field limit:

VΦlim ∇ = ,
r→∞

∞ (3)

where V∞ denotes the imposed velocity far from the body.
Using Green's identity, the general solution to Eq. (1) can be written

as:
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which gives the velocity potential Φ at any point p. This potential is
considered to be caused by a distribution, on the surface of the body
SB, of point sources of intensity Φ n Φ n∂ /∂ − ∂ /∂int and doublets of
intensity Φ Φ− int oriented along axes n, and by a distribution, along
the wake, of doublets of intensity Φ Φ−+ − with axis of orientation n.
Fig. 1 shows the body and the relevant surfaces; on the body n is
oriented outward while it points upward along the wake. Φm is the
velocity potential produced at a point p by a point source of unit

strength located on ds, nΦ▿ ·m gives the velocity potential at a point p
produced by a doublet of unit strength located on ds and oriented along

n− , Φint is the so-called interior potential, which is required to satisfy
the Laplace equation in the interior of the body, and the final term in
Eq. (4) is the potential of the stationary flow far from the body,
evaluated at p: Φ U x α z α= ( cos + sin )∞ ∞ , where VU =∞ ∞ , α is the
angle between the incident flow and a reference line (angle of attack),
and x and z are the coordinates of the point p in a fixed reference
frame.

Imposing Φ n∂ /∂ = 0 on the boundary of the body, the velocity
potential at the point p can be written as
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Taking the point p to be on the surface of the body reduces the problem
to an integral equation for the unknown velocity potential on the
surface.

To simplify calculations, in what follows we take Φ = 0int . In this
case the point source distribution σ vanishes, and Eq. (5) reduces to
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3. Global error estimate for dirichlet formulation

Here we derive an estimate for the expected numerical error upon
solving Eq. (7) with the lower order panel method. This equation can be
written as
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where, in the first integral, the variable of integration, s, is the arc
length parameter along the body surface, s s s= ( ) is a point on the body
surface SB, and n n s= ( ) is the (unit) normal vector directed outward
from that point. In the second integral the variable of integration is ξw,
measuring distance along the wake panel SW, while ξ ξ ξ= ( )w w w is a
point on the wake panel and nw is a unit normal vector directed
upwards. The prefactor Γ Φ Φ= −+ − denotes the circulation around
the body.

In what follows, the geometry of the body will be approximated with
a collection of flat panels i Nℓ, = 1 ..i of length li. We assume that the
intensity of the doublet distribution is constant on each individual
panel and that all panels are of comparable size, i.e, with a character-
istic lengthscale l O N= (1/ ); hereafter, we use the Landau notation
“O (·)” for order of magnitude. The discretization of the body surface
and the wake are illustrated in Fig. 2.

Enumeration of the panels begins at the point of attachment of the
wake, with panel number 1, and continues clockwise around the body,
ultimately reaching the starting point again after panel N (this time
from above the wake panel). As illustrated in Fig. 2, the endpoints of
these panels (which lie on the body surface) similarly divide the true
body surface into N (curved) segments Li. We may thus decompose the
first integral term in Eq. (8) to get

Fig. 1. Sketch of the body and associated surfaces: body surface SB, wake surface SW,
and a surface at infinity S∞. Fig. 2. Discretization of the body surface.
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