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A B S T R A C T

An analytical formulation is presented for three-dimensional Green's functions of continuously inhomogeneous
linear viscoelastic transversely isotropic half-space subjected to either ring load or point load. It is assumed that
the elastic moduli of the half-space vary in terms of depth as bounded exponentially functions, while the mass
density is constant. The method of potential functions is used to partially decouple the governing equations,
after which Fourier series expansion followed by Hankel integral transforms is applied to transform the partial
differential equations to ordinary differential equations (ODEs) with variable coefficients. Then, Frobenius
series method is employed to determine the potential functions and then the displacements and stresses in the
transformed domain, which are used to evaluate these functions in physical domain. The validity of the
formulations and numerical process is shown for several simplified cases comparing with the known solutions in
the literature. Finally, the displacement and stress Green's functions are presented for several physical cases due
to either unit ring load or unit point load. The results show that if the shear waves are produced in the interested
direction, both inhomogeneity parameters and material damping may change the dynamic response of the half-
space significantly, especially in high frequencies.

1. Introduction

Green's functions are the heart of many analytical and numerical
techniques employed in solving numerous problems in the mechanics
and physics of solids. These functions can be used as the fundamental
solutions in boundary element method [1,2], which is a powerful
numerical/analytical method for solving some specific boundary value
problems, especially in the subject of soil-structure interaction. Green's
functions are also employed in several other engineering and physical
problems such as material characterization, damage/inclusion detec-
tion, wave propagation, seismology [3], inverse problems and impe-
dance functions of foundations supporting structures or industrial
machineries [4]. Several principle parameters may affect the Green's
function of the medium including material properties (anisotropy,
viscoelasticity, inhomogeneity), the configuration of the interested
domain (full-space, half-space, layered domain, domain including
inclusions, etc.), and the load specifications. Reviewing the investiga-
tions exist in the literature about material properties of the soil
medium reveals some main characteristics. In-situ measurements such
as cross-hole tests for isotropic materials indicate that the wave velocity
in the soil medium varies with depth [5], which is mainly due to change
of the elastic moduli, and show that even un-layered soil medium is

inhomogeneous in depth. On the other hand, elastic moduli of the soil
medium in horizontal and vertical planes are different, and its behavior
may be modeled as transversely isotropic behavior [6]. Moreover,
studies done by different researchers such as Zhang et al. [7] show that
the soil half-space is a viscoelastic medium with energy dissipation
property, which can be represented by damping ratio. In the other
words, a realistic soil has three main characteristics as inhomogeneity,
transversely isotropy, and viscoelasticity. These features affect both the
wave propagation in the media and dynamic response of the founda-
tions resting on the soil.

Several researches can be found in the literature studying these
characteristics and their effects on the dynamic response of the
medium with some simplified assumptions, most of them without
considering all of these characteristics simultaneously. This paper
concerns with these properties of the soil simultaneously, and a
mathematical solution accompanied with a numerical procedure is
developed to derive the displacement and stress Green's functions for a
continuously inhomogeneous viscoelastic transversely isotropic half-
space.

A summary of researches in the fields interested in this paper has
been presented by Cheshmehkani and Eskandari-Ghadi [8], and main
features of wave propagation and dynamic response of continuously
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nonhomogeneous isotropic half-space comparing with the homoge-
neous one are described there based on these studies. Most of the
studies done for inhomogeneous media are in the context of isotropic
materials, while the study of wave propagation and dynamic responses
in continuously inhomogeneous transversely isotropic media are very
limited in the literature, mainly due to mathematical complexities and
the difficulties in numerical evaluations. Main studies in this field
include Wang et al. [9,10], and Eskandari-Ghadi and Amiri-Hezaveh
[11], who all considered similar distributions for elastic modulus and
the density in depth of transversely isotropic half-space, which results
in a constant wave velocity in depth. Moreover, both elastic moduli and
density in these studies approach to either a very large value or a very
small value at a large distance from a reference point. These researches,
although show the mathematical difficulties concerning continuously
inhomogeneous transversely isotropic materials, they do not consider a
general case in continuously inhomogeneous media.

Cheshmehkani and Eskandari-Ghadi [8] have studied the dynamic
response of continuously nonhomogeneous transversely isotropic
viscoelastic half-space assuming a bounded distribution of elastic
moduli as C z C C C e( ) = − ( − )ij ij ij ij

βz
∞ ∞ 0

− accompanied with a constant
density, subjected to an axisymmetric vertical load such as point load
or distributed load applied on a circular patch. Without being needed
any potential function, they employed Hankel integral transforms
accompanied with Frobenius series method to solve the boundary
value problem, and they indicated that when vertical load is applied,
inhomogeneity parameters affect the dynamic response of the half-
space considerably, especially at the vicinity of the free-surface.

In this paper, the Green's functions of continuously nonhomoge-
neous transversely isotropic half-space are presented for an arbitrary
surface ring load of unit magnitude and also its degeneration to unit
point load. The elastic moduli in this study vary in depth with a
bounded distribution within two limits denoted as C ij0 and C ij∞ , while
the mass density is constant. These assumptions for elastic moduli and
mass density have already been investigated by Vrettos and Prange
[12] who experimentally studied the soil profile of the uniform sand
deposit, and evaluated the appropriate inhomogeneity parameters for
it, assuming the bounded distribution for shear modulus and constant

density. The resulted inhomogeneity parameters have been used in
some other studies of Vrettos such as [13–17]. Here, viscoelastic
behavior is also considered to model the energy dissipation of the soil
[7]. In fact, the solution presented in the previous paper of the authors
[8], which was for axisymmetric vertical load is extended in this paper
to 3D load cases with the use of appropriate new potential functions to
partially decouple the governing equations of motion, and then Fourier
series expansion followed by Hankel integral transforms is employed.
In this way, the coupled governing differential equations are trans-
formed to some ordinary differential equations with variable coeffi-
cients, which are solved using Frobenius series method in the next step.
The unknown constants appeared in the integration process are
specified by satisfying boundary conditions at the free surface and
radiation condition at infinity. Employing this procedure, at first the
potential functions and then the displacements and the stresses are
determined in Hankel/Fourier transformed domain. Afterwards, the
theorem of inverse Hankel integral transforms followed by Fourier
series expansion are applied to specify the displacement and stress
responses in the real domain. Eventually, the components of displace-
ment- and stress-Green's functions are numerically evaluated for some
material specifications and for several excitation frequencies to in-
vestigate the effect of inhomogeneity in different frequencies. The
results show that the dynamic responses of inhomogeneous transver-
sely isotropic media mainly differ from the homogeneous one, espe-
cially when shear waves are produced due to the load. The formulations
of this paper can be used as the kernel in integral base numerical
methods such as boundary element method.

2. Statement of the problem

The domain of the problem considered in this paper is a viscoelastic
transversely isotropic half-space, where the elastic moduli vary in
depth with a bounded exponential function within two limits. The axis
of symmetry of the medium is normal to the horizontal surface and a
cylindrical coordinate system r θ z( , , ) is attached on the free surface as
reference in such a way that its z− axis is taken to be depth-wise and
parallel to the axis of material symmetry. An arbitrary time-harmonic

Nomenclature

A i( = 1~6)i Coefficients determined by boundary and regularity
conditions

a Radius of the ring load
a b d, ,n n n Coefficients of different terms of power series
C ij0 Elastic moduli at free surface z=0
C ij∞ Elastic moduli at infinite depth
C C/ij ij0 ∞ Inhomogeneity parameter
E E, 0 Young's moduli in the plane of transverse isotropy in

general and at free surface z=0
E E′ , ′0 Young's moduli in the direction normal to the plane of

transverse isotropy in general and at free surface z=0
r θ z tf ( , , , )h Horizontal component of the ring load

Fh Magnitude of the ring load in horizontal direction
r θ z tf ( , , , )v Vertical component of the ring load

Fv Magnitude of the ring load in vertical direction
G G, 0 Shear modulus in the plane normal to the axis of

symmetry in general and at free surface z = 0
G G′, ′0 Shear modulus in planes normal to the plane of transverse

isotropy in general and at free surface z = 0
Jm Bessel function of the first kind and mth order
L Unit length for point load case or a (radius) for ring load

case
P Q R, , Components of applied time-harmonic surface load in

r θ− , − and z− directions

r θ z, , Radial, angular and vertical coordinates in cylindrical
coordinat system

t Time variable
ui Displacement component in i direction

i r θ z or i x y z( = , , = , , )
ûi

k Displacement response in i− direction due to unit point/
ring load in k− direction

x y z, , Coordinates in Cartezian coordinate system
β Inhomogeneity parameter
δ r( ) Dirac-delta function
ε i j r θ z or x y z( , = { , , } { , , })ij strain tensor
η Transformed depth variable
ρ Material density
σ i j r θ z or x y z( , = { , , } { , , })ij Stress tensor

σ̂ij
k Stress response σij due to unit point/ring load in k−

direction
υ Poisson's ratio, υ ε ε= − /θθ rr when subjected to the stress

σrr or υ ε ε= − /rr θθ when subjected to the stress σθθ
υ′ Poisson's ratio, υ ε ε ε ε′ = − / = − /rr zz θθ zz when subjected

to the stress σzz
ω0 Non-dimensional frequency
ω Angular frequency
ξ Hankel's integral transform parameter
ζ Material damping ratio
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