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A B S T R A C T

Contamination of soil, surface and subsurface water resources through direct or indirect sources is a major
problem in many parts of the world. To understand the contamination process in the porous media, we have to
simulate the contaminant transport mechanism and predict its behaviour with respect to space and time. The
contaminant transport process can be simulated by solving the well posed advection-dispersion partial
differential equation by using numerical techniques with appropriate initial and boundary conditions. The
transport equation is generally solved using grid based techniques like Finite Difference Method (FDM) and
Finite Element Method (FEM). The Meshless methods are alternatively developed numerical methods to
overcome the limitations of aforementioned grid based techniques. This paper presents a newly developed
Meshless Local Petrov-Galerkin (MLPG) model based on the moving least squares (MLS) method for numerical
simulation of contaminant transport equation in porous media. The Meshless MLPG-MLS model has been
developed for one- and two- dimensional problems in MATLAB. These models are investigated and verified with
available analytical and numerical solutions for its accuracy and efficiency. The models gave quiet promising
results showing the efficacy and applicability of the method for the simulation of contaminant transport in
porous media.

1. Introduction

Contaminant transport in the porous media has been one of the
most important research topics in the hydro-geological sciences and
geo-environmental engineering for the past many decades. Once a
contaminant is released into the soil, it will interact hydrologically,
physically and chemically with both the water present and the soil
matrix [1]. It is essential to develop an accurate numerical model for
predicting the movement and transfer of contaminants in the porous
media, for proper management and remediation of the contaminated
sites. Numerical modelling plays an important role in the real life
management of groundwater systems [2]. Any successful application of
numerical schemes for engineering solutions to these problems de-
mands a firm comprehension of the principles of contaminant trans-
port through porous media. The effect of individual governing mechan-
isms which control the fate of contaminants in the porous media and
the movement of the contaminant plume are usually complex to assess,
as the entire process is the outcome of interactions of many factors like
dispersion, advection, sorption, reaction, degradation, etc., [3–5].

Many analytical solutions for the contaminant transport problems
in which the boundary conditions and geometries are simplified are

available in the literature [6–8]. However, there is no way of computing
the behaviour of the real field case studies unless it is a full-scale
experiment actually subjected to the real conditions. Construction of a
full-scale experimental set up for every field study would be restrictive,
costly and time consuming. The only feasible substitute, therefore, is to
develop a numerical model, which reasonably represents and simulates
the relevant problem scenario and can predict the possible significant
outcomes of the transport phenomena [4,7].

Contaminant transport in the porous media is modeled using
mathematical techniques wherein the processes under simulation are
expressed by a set of governing equations defined over a specific
domain with Dirichlet and/or Neumann boundary conditions [6]. The
most frequently used numerical techniques are namely analytic,
boundary element, finite difference, finite element and finite volume
methods [9]. However, they rely on grids/elements that are connected
together by nodes in a proper manner leading to high cost of meshing
and re-meshing. These techniques can model problems with complex
geometries, complicated boundary conditions, heterogeneity and non-
linearity. However, they have some difficulties when dealing with
problems where there are high advective velocities, low dispersivities
and/or high contrast in dispersivity [10].
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In case of modelling advection-dominated transport phenomena,
the main difficulty arises due to the presence of advective operators in
the formulation of transport problems which are based on kinematical
descriptions other than Lagrangian [11]. Advection operators are, in
fact, non-symmetric and thus the approximation property of Galerkin
finite element method (FEM), which is the basis for success in
symmetric cases, is lost when advection dominates the transport
process [4,11]. In practice, solutions to advection-dominant transport
problems by the Galerkin FEM are often corrupted by spurious node-
to-node oscillations. These can be removed by mesh and time step
refinement schemes. To overcome the aforementioned shortcomings
and to develop a more robust method has prompted for the develop-
ment of alternative numerical techniques such as Meshless methods
[4,12].

In the past two decades, a group of new methods called Meshless
methods has been developed, whose main aim is to get rid of the mesh
and to compute approximate solutions for the unknown variables in the
governing equation entirely using only a set of nodes [12]. Meshless
methods such as the element-free Galerkin [13], meshless local
Petrov–Galerkin (MLPG) [14], hp-clouds [15], the reproducing kernel
particle [16], the smoothed particle hydrodynamics [17], the diffuse
element [18], the partition of unity finite element [19], the natural
element [20] and the meshless using radial basis functions [21] for
seeking approximate solutions of partial differential equations have
become popular because of the flexibility of placing nodes at arbitrary
locations and the ability to simulate even for complicated conditions.
So far only limited amount of research is done regarding the potential
usage of these meshless methods for modelling contaminant transport
in porous media [11,22–26].

The Meshless Local Petrov-Galerkin (MLPG) was originally pro-
posed by Atluri and Zhu [14], for solving linear and non-linear
boundary problems. The MLPG methodology of domain representation
is such that of local weak based formulation wherein the sub-domain
lies within the global problem domain and these sub-domains can
overlap each other, rather than forming a continuous mesh. Generally,
in MLPG method, the nodal trial/shape and test functions are taken
different to reduce the computational cost and number of points
required to obtain a converged result [27]. The MLPG method has
been successfully used for solving numerous boundary value problems
related to various fields of study [28–35]. Even though MLPG has been
used for many engineering problems in the last decade, to the knowl-
edge of authors, it was not applied for contaminant transport problems.
Earlier [36,37], an attempt was made to use this method for ground-
water flow simulation wherein, trial and test functions are taken such
that it belongs to the same function spaces with Exponential/Gaussian
Radial basis function (EXP-RBF). Although encouraging results were
reported, there were still some technical issues in using RBF when
dealing with high advective velocities, low dispersivities and/or high
contrast in dispersivity, and functional issues like, the determination of
suitable RBF shape parameters, the optimal shape and size of the sub-
domain which are to be determined subjectively through parametric
studies in aforementioned cases. Hence, the moving least squares
(MLS) approximation [38], which is one of the most widely used
methods for the construction of meshless shape functions is alterna-
tively undertaken. It has been found that the MLS is accurate and
stable for arbitrarily distributed nodes [12] for many problems in
computational mechanics. However, to the best of author’s knowledge,
the MLS Meshless Local Petrov Galerkin technique for solving the
contaminant transport in porous media was not attempted earlier.

The objective of this paper is to develop a Meshless Local Petrov
Galerkin model based on MLS for the numerical simulation of
contaminant transport in porous media. Few numerical examples with
different problem domains and different nodal distributions are used to
validate and investigate the efficiency of the newly developed Meshless
formulation.

2. Meshless Local Petrov Galerkin method

In this study, a Meshless Local Petrov Galerkin technique based on
the MLS for the numerical simulation of contaminant transport
equation in porous media is developed. The moving least square
(MLS) approximant is formulated [12,38–42] to approximate the
function xc( ) with xc ( )h , in which xc( ) represents the contaminant
concentration and xc ( )h is the nodal concentration at x, where x=(x, y)
is a position vector.

2.1. Moving Least Squares (MLS) scheme

The trial function in Meshless methods is approximated with the
help of randomly distributed nodes in a local domain about the point of
interest. Consider a sub-domain Ω*, which is the neighbourhood of a
point x and is denoted as the domain of definition of the MLS
approximation for the trial function at x, which is located within the
problem domainΩ. To approximate the distribution of function c in Ω*,
over a number of randomly located nodes x{ }i , i =1, 2 …. N, the Moving
Least Squares approximation xc ( )h of c, for all x ϵ Ω*, can be defined as
[12,39].

x x p x a xc c for all x( ) ≅ ( ) = ( ) ( ) ϵ Ω*
Th (1)

where p x x x xp p p( )=[ ( ), ( ), … ( )]T
m1 2 is a complete monomial basis, m is

the number of terms in the basis; if we denote by t the highest order
polynomial which is completely included in the basis, the relation
between m and t can be described as: m =(t+1)(t+2)/2 in two
dimensions, while m =(t+1)(t+2)(t+3)/6 in three dimensions and
a x( ) is a vector containing coefficients a x( )j , j=1,2,….m which are
functions of the spatial coordinates.

In the present work, we use the linear basis p x x x( ) = [1, , ]T 1 2 ;m =3,
which assures linear completeness. Thus, it can reproduce any smooth
function and its first derivative with arbitrary accuracy, as the
approximation is refined.

The coefficient vector a x( ) is determined by minimizing a weighted
discrete norm, which is defined as [12,39]:
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where, xi denotes the position vector of node i; xw( )i is the weight
function associated with the node i, with xw( ) > 0i for all x in the
support of xw( )i ; N is the number of nodes in Ω* for which the weight
functions xw( ) > 0i and the matrices P and W are defined as
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It should be noted that ĉi, i=1, 2,….,N in Eqs. (2) and (5) are
fictitious. The stationarity of J in Eq. (2) with respect to a(x) leads to
the following linear system:

A x a x B x c( ) ( ) = ( ) ˆ (6)

where the matrices A(x) and B(x) are defined by

∑P x p xA x WP B x P w x p( ) = ≡ ( ) = ( ) ( ) ( )T T
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