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A B S T R A C T

A special boundary element for the two-dimensional anisotropic elastic solids containing a single elliptical hole
or crack is applied. The main feature of this special boundary element is that no meshes are needed along the
hole or crack boundary. Take this special boundary element as a base, in this paper a new method called
boundary-based finite element method is developed to deal with the problems of two-dimensional anisotropic
elastic solids containing multiple holes and cracks. This method is established by using the relation between
nodal force of finite element and surface traction of boundary element. With the aid of this relation, a
combination of boundary elements can be transformed into a single finite element. By purposely arranging each
subregion with a single hole or crack and assembling the entire region according to the rule of finite element
method, the problems with multiple holes and cracks can be solved. Furthermore, simple formulae to evaluate
the stress concentration factor of hole and the stress intensity factors of crack are derived, by which these factors
can be evaluated by using only the remote boundary displacements and tractions. Accuracy and efficiency are
illustrated by comparison with analytical solutions, conventional boundary element, and finite element method.

1. Introduction

The Green's function for the problem of a two-dimensional linear
anisotropic elastic solid containing an elliptical hole has been obtained
analytically by using Stroh's complex variable formalism [1,2]. Through
the use of this Green's function, a special boundary element method
(SBEM) for an anisotropic elastic solid containing a single elliptical
hole was developed [3] and extended to the vibration analysis [4]. The
main feature of SBEM is that no meshes are needed along the hole
boundary since the traction-free boundary conditions are satisfied
exactly by the Green's function. Thus, a vast of computer time and
storage in numerical calculation can be saved. Moreover, due to the
exact satisfaction of the hole boundary condition, the results are more
accurate than those obtained by the conventional boundary element
method (CBEM). Let the minor axis of ellipse be zero, the same
fundamental solution can be applied to analyze the problem with a
single straight crack [5]. The advantage of no meshes needed on the
crack surfaces still works for SBEM. However, due to the restriction of
Green's function it is only valid for the straight crack, the interesting
cases such as arc-shaped cracks, branched cracks, edge cracks emanat-
ing from holes, and cracks under body force discussed in [6] are not
included. To solve the general crack problems with the benefit of
analytical solutions, several different methods have been proposed in

the literature, such as edge function method [7], multi-domain BEM
[8–10], displacement discontinuity method [11], dual BEM [12–16],
and a special single-domain BEM [6,17].

In addition to the problem of a single hole or crack, there are also
many studies discussing the problems of multiple holes and/or cracks.
For example, two circular holes in an infinite isotropic medium [18],
two elliptical holes in a laminated composite [19], thermal analysis of
multiple circular holes [20], multiple cracks [21], and cracks at fastener
holes [22]. In order to extend the benefit of SBEM to the problems of
multiple holes and cracks, the subregion technique was applied to
make each subregion contain only one hole or one crack [23]. The final
system of equations for the whole region was then obtained by adding
the set of equations for each subregion together with compatibility and
equilibrium conditions between their interfaces. Therefore, if several
holes and/or cracks appear in the anisotropic elastic solid, the system
of equations will become complicated due to the requirement of
compatibility and equilibrium along all the interfaces of subregions.

To avoid the trouble caused by the subregion technique, in this
study the above-mentioned SBEM is improved by employing the
concept of the coupling of boundary element and finite element.
Although this concept has been mentioned long time ago [24,25],
most of the works divide the body into two domains. One domain is
solved by finite element method, and the other is by boundary element
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method. Instead of two totally different domains, in this study the
entire domain is divided into N domains (N is the number of holes and
cracks) and each domain is discretized according to the rule of SBEM.
To assemble all domains smoothly without involving the trouble of
subregion technique, SBEM is transformed into an equivalent finite
element by using the relation between element nodal force of finite
element and surface traction of boundary element. After the transfor-
mation, all the elements can be assembled together by following the
rule of finite element method [26], and the compatibility and equili-
brium considered in the subregion technique will then be satisfied
automatically. The method proposed in this paper is therefore called
boundary-based finite element method (BFEM). Note that the pro-
posed method is different from the other similar name “the scaled
boundary finite-element method (sometimes also mentioned in abbre-
viation by BFEM)” [27], which can be characterized as a fundamental-
solution-less BEM solely based on finite element [28]. On the other
hand, in our proposed method each region constructed by arbitrary
number of boundary nodes is a single finite element transferred from
SBEM, in which each element containing a single hole, a single crack,
or none of them is enriched by the fundamental solution.

After getting the nodal displacements and nodal forces by the
system of equations of finite element, the nodal tractions are calculated
from the original system of equations of boundary element. Like the
calculation of CBEM, after all the values of tractions and displacements
of the boundary nodes are determined, the values of displacements,
strains and stresses at any interior can be calculated from the boundary
integral equation by setting the free term coefficients to be the
Kronecker delta. Unlike the conventional method which usually needs
fine meshes along the hole boundary or very fine meshes near the crack
tip, in BFEM no meshes are required on the hole/crack surface, and
both of the stress concentration factors of hole and the stress intensity
factors of crack can be evaluated by using only the remote boundary
displacements and tractions. To show the accuracy and efficiency of the
proposed BFEM, several numerical examples are executed and com-
pared with the solutions obtained by analytical solutions, CBEM and
commercial finite element software ANSYS.

2. A special boundary element for problems of holes and
cracks

If body forces are omitted, the boundary integral equations for
anisotropic elastostatics can be written as [25]

∫ ∫c u t u dΓ u t dΓ i jξ ξ ξ x x x ξ x x x( ) ( ) + *( , ) ( ) ( ) = *( , ) ( ) ( ),), , = 1, 2, 3,ij j
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where Γ denotes the boundary of the elastic solid; u x( )j and t x( )j are the
displacements and surface tractions at the field point x of the boundary
Γ ; u ξ x*( , )ij and t ξ x*( , )ij are fundamental solutions of displacements and
tractions; c ξ( )ij is a coefficient dependent on the location of the source
point ξ, which equals to δ /2ij for a smooth boundary and c δ=ij ij for an
internal point. The symbol δij is the Kronecker delta.

In boundary element formulation, the boundary Γ is approximated
by a series of elements, and the points x, displacements u and tractions
t on the boundary are approximated by the nodal points xn, nodal
displacement un and nodal traction tn through different interpolation
functions. If the same quadratic variation within each element is
assumed for the boundary points x, displacements u and tractions t,
then

ϖ ϖ ϖ

ϖ ϖ ϖ

ϖ ϖ ϖ m

x x x x

u u u u

t t t t

= + + ,

= + + ,

= + + , on the th element,

m m m

m m m

m m m

1
(1)

2
(2)

3
(3)

1
(1)

2
(2)

3
(3)

1
(1)

2
(2)

3
(3) (2a)

where

ϖ ς ς ϖ ς ς ϖ ς ς= 1
2

(1 − ), = (1 − )(1 + ), = 1
2

(1 + ).1 2 2 (2b)

In (2a), a symbol with subscript m and superscript (1), (2) or (3)
denotes the value of node 1, 2 or 3 of the mth element; the variable ς is
the dimensionless coordinate ranging from −1 to 1. Substituting the
quadratic approximation assumed in (2) into the boundary integral Eq.
(1), and following the standard procedure of boundary element
formulation [22], a system of algebraic equations can be written as
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n

N
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where Yin and Gin are the matrices of influence coefficients associated
with nodes i and n; un and tn are the vectors of displacements and
tractions at node n; N is the number of nodes.

It's known that if the fundamental solutions for the problems with
holes or cracks are employed, their associated boundary elements will
possess several advantages than the regular boundary elements, e.g. no
meshes are needed along the boundaries of holes or cracks [3,23]. In
order to take advantage of this special feature, the fundamental
solution derived from the Green's function for the problems of elliptical
holes was used in this study, which can be written in matrix form as [2]
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and i = −1 . In (4a,b), A and B are material eigenvector matrices; Re
denotes the real part of a complex value; superscript T is the transpose
of a matrix; the overbar stands for the complex conjugate; the angular
bracket < > stands for a 3×3 diagonal matrix in which each compo-
nent is varied according to its subscript α, e.g., z z z z< > = diag[ , , ]α 1 2 3 ;
the symbol sF F= ∂ /∂s, where s is the tangential direction; Ik is the 3 × 3
diagonal matrix with a unit value at the kk component and all the other
components are zero, i.e., I = diag[1, 0, 0],1 I = diag[0, 1, 0],2
I = diag[0, 0, 1]2 ; the variables ζ ,α α = 1, 2, 3, are related to the complex
variables z x μ x= +α α1 2 of the field point x xx = ( , )1 2 by
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in which a and b are the major and minor axes of the ellipse
respectively, and μ α, = 1, 2, 3α are the material eigenvalues. Same

equation as (5) was also used for the determination of ζα, which is
related to the complex variables z x μ x= +α α1 2 of the source point

x xξ = ( , )1 2 . Note that there will be more than one value of ζα (or ζα)
mapped by zα (or zα) through the relation (5). Among them, the one
located outside the unit circle of ζα (or ζα), i.e., ζ| | > 1α (or ζ| | > 1α )
should be selected [29].

3. Transition of boundary element to finite element

The special boundary element introduced in the previous section is
for the anisotropic plates containing only a single hole or crack. If there
are multiple holes and cracks inside the body, subregion technique can
be applied to make each subregion contains one hole or one crack [23].
The final system of equations for the whole region is then obtained by
adding the set of equations for each subregion together with compat-
ibility and equilibrium conditions between their interfaces. Therefore,
if several holes and cracks appear in the anisotropic solid, the system of
equations will become complicated due to the requirement of compat-
ibility and equilibrium along all the interfaces of subregions. For
example, if we have an internal point intersected by four subregions
(e.g., point A of Fig. 1), to describe the difference of tractions on
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