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A B S T R A C T

When thermal diffusivity does not vary smoothly within a computational domain, standard numerical methods
for solving heat equilibrium problems often converge to an inaccurate solution. In the present paper, we discuss
a mesh-free, radial basis function-generated finite difference (RBF-FD)-based method for designing stencil
weights that can be applied directly to data that crosses an interface. The approach produces a very accurate
solution when thermal diffusivity varies smoothly on either side of an interface. It continues to produce high-
quality results when a region between two interfaces is much smaller that the distance between adjacent discrete
data nodes in the domain (as becomes the case for thin, nearly insulating layers). We give several test cases that
demonstrate the method solving heat equilibrium problems to 4th-order accuracy in the presence of smoothly-
curved interfaces.

1. Introduction

Since the 1970s and 1980s, significant effort has gone into
numerically solving parabolic and elliptic equations that model heat-
or otherwise diffusivity-related transport processes in domains with
interfaces or challenging boundary conditions. Some of the earliest
works in this area include Babuska’s finite element approach to elliptic
problems [1], Peskin’s immersed boundary method used for modeling
blood flow in the heart [2], and Mayo’s work with integral equations to
solve Poisson problems and the biharmonic equations in irregular
regions [3].

As with the hyperbolic PDEs that model wave transport, many
investigators continue to propose new and improved numerical solu-
tions to diffusive interface problems. A significant amount of this work
has involved FEMs or other weak-form methods [4–6].

Other efforts have focused on correcting the error in using tradi-
tional finite difference stencils to differentiate non-smooth data across
an interface, such as the immersed interface method introduced by
LeVeque and Li in [7]. Around the same time, Li and Mayo [8]
published work on an alternating direction implicit (ADI) scheme for
solving heat equations with interfaces to 2nd-order accuracy. Li and
Shen [9] followed up on this method with an ADI approach that
allowed smoothly-variable model parameters on either side of an
interface. Wiegmann and Bube [10] and Linnick and Fasel [11]
presented methods that account for the jump in directional derivatives
along Cartesian grid lines when an interface is crossed. Fornberg and

Meyer-Spasche [12] and Fornberg [13] described a simple interface
correction method for a class of free boundary problems. Some recent
interest has been devoted to the study of compact stencils and their
correction near interfaces, as in Mittal et al. [14]. Still other approaches
use smooth data extensions or “ghost” methods [15,16], the use of
embedded domain [17], and coordinate transformation of a curvilinear
interface problem into a rectilinear one [18].

A number of very recent studies on the numerical solution of PDEs
have focused on the application of a radial basis function-generated
finite difference (RBF-FD) approach that allows determination of finite
difference-like collocation weights on a mesh-free cloud of data nodes.
Fornberg and Flyer [19] published a comprehensive primer on the
subject last year, and papers exploring the use of such methods to
handle challenging boundary conditions in elliptic problems (e.g.
[20,21]) are increasingly seen in computational literature.

The present method is an adaptation of our work with time-
dependent wave equations in [22] and [23] that uses RBF-FD with
an included support space of piecewise polynomials to solve PDEs to a
high degree of accuracy in the presence of interfaces. It offers the
following combination of features:

• It can be used on a mesh-free cloud of data nodes whose structure
accounts for interfaces, as in [24], or conforms to irregular
boundaries, as in [20].

• Stencils that include data nodes on both sides of an interface (or
possibly multiple interfaces) include all important mathematical
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information about that interface (curvature, etc.) in the stencil
weights. No consideration of the interface is needed after the
weights are formed.

• The method requires no formation of fictitious data extensions
across interfaces.

• RBF-FD avoids the necessary meshing of FEM techniques.

• Support functions and collocation weights for stencils are deter-
mined via relatively small and simple matrix problems.

• The method can achieve any degree of spatial accuracy demanded by
the user (though there may be a practical upper limit for stable
solutions depending on interface properties in a given problem).

Section 2 of the present paper offers a brief introduction to the
isotropic heat equation. Section 2.1 gives a short overview of RBF-FD
stencil formation in regions away from interfaces. Section 2.2 explains
a simple way to explicitly determine the piecewise polynomial structure
of temperature data as that data crosses a curved interface, and how
one may use that information within RBF-FD stencils that cross
interfaces. When doing so, interfacial thermal diffusion problems
may be solved to a high order of accuracy. In Section 3, we present
numerical examples which show that the method solves such problems
to 4th-order accuracy. Section 3.1 verifies the method presented here
vs. an analytical solution in the presence of linear interfaces. Section
3.2 focuses on solution of a simple boundary value problem in a
domain with two mildly-curved interfaces. Finally, Section 3.3 presents
results from a domain with two circular interfaces that enclose a very
thin, strongly insulating region.

2. RBF-FD methodology

The main goal of the present paper is to solve the isotropic 2-D heat
equation in domains where its parameters are discontinuous or non-
smooth:
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In (1), u represents temperature and α x y( , ) thermal diffusivity. At
an interface, both u and α un·( ∇ ) must be continuous, where n is the
interface’s normal vector. The latter constraint enforces continuity of
heat flux across the interface. This paper focuses on solutions to the
equilibrium problem where (1) is equal to zero and there is no change
in a solution over time. Even so, information from the time-dependent
equation will be used to ensure that the equilibrium solutions are
correct to a high order of accuracy.

Fig. 1 shows an example 2-D domain containing a single curved
interface. The parameter α may change instantly in value between the
upper and lower sides of that interface. In this domain, RBF-FD nodes
are distributed with a quasi-uniform structure that accounts for the
interface shape.

For stencils that do not cross an interface, weights are obtained
through standard RBF-FD methodology described briefly in Section 2.1
and in more detail in [19,25]. In stencils that do cross the interface,
continuity of temperature and heat flux help to create a special set of
RBF-FD weights that ensure high-order accuracy when applied simul-
taneously to data on both sides of the interface.

2.1. Determination of RBF-FD stencils away from an interface

Traditional finite difference weights for approximating a 2-D
operator L (such as L x= ∂/∂ or L x y= ∂ /∂ + ∂ /∂2 2 2 2) cannot be deter-
mined in a useful way within an arbitrary stencil of data nodes.
Attempting to use the standard polynomial approach from 1-D in a
2-D setting results in unstable and sometimes even singular linear
systems that must be solved. However, one can pair a set of 2-D
polynomials with RBFs ϕ x x(|| − || )k 2 , with one RBF placed at each

stencil point x x y= ( , )k k k . A linear system similar to the one in (2) is
then solved to determine stencil weights. Although only constant and
linear polynomial terms are seen in (2), higher-order terms may be
added to achieve more accurate stencils. Entries in the 1, x, and y
columns are evaluations of those polynomial terms at a particular node
in the stencil (for example, xk would represent the evaluation of the
function f x y x( , )= at node k).
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Entries in the (symmetric) matrix A are evaluations of the RBFs
placed at each data node (rows) and evaluated at each node (columns):
a ϕ x x= (|| − ||)i j i j, . The RHS terms are evaluated at the evaluation node
of the stencil, xc. If the stencil node structure is reasonable and if the
RBFs are any of the commonly used types, including multiquadrics

(MQ): ϕ r εr( ) = 1 + ( ) ,2 Gaussians (GA): ϕ r e( ) = ,εr−( )2 or polyharmo-

nic splines (PHS)
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m , the resulting linear system

will generally be nonsingular. In the solution vector, w w, …, n1 are the
weights applied to data at nodes x k n, = 1, 2, …,k . The rest of the w-
entries are discarded. For more information about RBF-FD stencil
determination, see [19] (its Section 5.1.4 provides a derivation of (2)).

The approach above is used in this paper for stencils that do not
cross interfaces. Although the paper focuses on modification of the
supplemental support polynomials to enforce interface continuity
conditions, we also describe and implement a method for modifying
the RBFs to help achieve the same goal. In the case of a stencil that
crosses an interface, techniques from Section 2.2 are used to determine
exactly how each polynomial term (up to the desired degree of
accuracy) changes as the interface is crossed. Evaluation of polynomial
terms seen in (2) is then dependent on which side of that interface each
node resides.

Fig. 1. RBF-FD nodes near a curved interface. The polygonal regions show various
stencils, some which cross the interface and some which do not. Stencils are designed to
approximate PDE operator values at the circled nodes.
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