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A B S T R A C T

A non-linear continuum damage mechanics model for concrete constructions is analysed using a radial point
interpolation meshless method (RPIM). The fundamental mathematical relations and the material model are
fully characterized. The 2D plane stress RPIM formulation is extended to a rate-independent standard (local)
damage model considering both tension and compression static states. Additionally, in this work, the local
damage formulation is modified considering a non-local constitutive damage criterion with regard to a
Helmholtz free energy potential. Here, the internal variational fields, such as local and non-local damage
variables, are determined by a return-mapping damage algorithm. Due to the non-linear nature of the
phenomenon, a displacement controlled Newton-Raphson iterative approach is adopted to attain the non-linear
damage solution. In the end, the performance of the proposed non-local damage model is evaluated using an
experimental test of a notched-three-point bending beam available in the literature. The obtained solution
shows that the meshless methods are capable to effectively analyse concrete structures assuming a non-linear
non-local continuum damage model.

1. Introduction

Nowadays, the industrial structural design relies mainly on the
finite element method (FEM) [1] analysis to obtain efficiently accurate
solutions. This status quo can be explained with the vast number of
commercial FEM software packages available in the market and with
the robustness and reliability of the FEM. However, this fact cannot
hide some of the FEM drawbacks, such as the solution dependency on
the element mesh discretization (due to the mesh-based interpolation)
or the reduced continuity of its shape functions.

Numerous challenging fields in computational mechanics involve
the study of the numerical non-linear local damage solution of concrete
materials using FEM formulations, see e.g. [2–9]. Distinct aspects of
the continuum damage mechanics field have been investigated by
researchers to attain the experimental solution [9,10].

The standard –local– damage mechanics theory is applicable to
analyse several problems as introduced by Kachanov [11]. Different
types of material experiencing brittle or ductile behaviours could be
studied through continuum damage mechanics theory [see i.e.
Krajcinovic et al. [12,13]; Resende et al. [14]; Voyiadjis et al. [2]].
The foregoing authors have precisely focused on the local damage
mechanics in concrete structures. Afterwards, mathematical relations
for rate-independent damage mechanics associated with the local

damage were presented by Crisfield [15], Cervera et al. [3–5,16]. The
continuum rate-independent damage formulation considered in this
study respects Crisfield’s and Cervera’s hypothesis.

Basically, the degradation of the constitutive model due to the
presence of tensile and compressive enforced displacement states
include various principal stress terms in standard damage models
[8]. As a fact, the standard local constitutive models are inappropriate
whenever strong strain softening is encountered. Thus, the governing
differential relationships might lose ellipticity.

Numerically, this situation appears itself by spurious mesh sensi-
tivity of finite element computations. As the mesh is refined, the strain
starts to localize into a narrow band whose width depends on the
element size and tends to zero. Hence, the corresponding relation of
load-displacement always experiences snapback for a sufficiently fine
mesh, and the total energy dissipated by fracture converges to zero
[17].

In FEM studies, the most trustful approach to tackle the aforemen-
tioned disturbance, is to regulate the post-peak slope of the stress-
strain curve as a function of the element size. Consequently, the energy
dissipated in a band of cracking elements will be independent from the
bandwidth. It is possible to find in the literature more refined strategies
guaranteeing the corresponding objectivity (so-called localization limit-
ers) including higher-order gradient models, see e.g. [18–22] and also
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for viscoplastic regularization [23]. The concept of non-local averaging
is sufficient for the localization limiters and it can be applied to any
kind of constitutive model. The idea of non-local continuum models
was proposed by Eringen [24] and later on it was developed for the
strain-softening materials by Bazant [25]. Afterwards, Pijaudier-Cabot
proposed an improvement leading to the non-local damage theory [26].
Its early extension was established into various approaches of non-local
models for damage and fracture mechanics by Jirásek [17].
Furthermore, non-local plasticity combined with the finite element
method was presented by Stromberg et al. [27].

Recently, there are other works available in the literature regarding
the application of non-local damage formulations, such as: on nano-
composites and composite laminated panels [28,29]; concrete materi-
als [30]; complex microstructures [31], dynamic ductile fracture
problems combined with an Extended FEM (XFEM) viscoplasticity
model [32] and also in manufacturing simulations [33].

It is possible to find some experimental tests reporting the
behaviour of concrete materials, such as the softening response of
concrete under monotonic uniaxial tension test [34], the behaviour of
concrete under compressive enforced displacement [35], the response
of concrete under biaxial stress states [36] and the three-point-bending
tests on single-edge notched beams [37].

Various demanding isotropic non-linear damage models for con-
crete structures were analysed with the FEM formulations, such as
linear elastic models, see e.g. [9,38,39], rate-dependent models [3,5],
viscous-damage models [16] and, more recently, elasto-plastic damage
models for crack propagation using XFEM formulations [40].

However, the state-of-the-art lacks a reliable work on meshless
methods combined with a non-linear damage constitutive model,
particularly whenever the non-local model is required.

Therefore, this work aims to fulfil a gap in the RPIM state-of-the-
art, presenting an extensive and complete numerical study of the RPIM
regarding the analysis of continuum damage mechanics theory. In the
literature, it is possible to find relevant research works combining
meshless methods with damage mechanics [41,42]. Nevertheless, those
works use particle methods, such as the smoothed particle hydrody-
namics (SPH) and reproducing kernel particle methods (RKPM). These
formulations, in opposition to RPIM, lack the delta Kronecker prop-
erty. The efficient aspects of the non-local and standard damage models
are fully addressed. Since the authors fully developed their original
code to analyse the non-linear phenomenon here proposed, all the
relevant attributes of the RPIM can be studied with detail and validated
for the proposed damage constitutive model, such as: the size of the
influence domain; the integration scheme; the internal fields and
optimized damage variables; and the global efficiency.

The present formulation is suited for static or quasi-static structural
applications, since inertia is not accounted in this continuum local
damage model.

This work is organized as follows; first, in Section 2, the Radial
Point Interpolation Method (RPIM) is presented, including the inte-
gration scheme, the nodal connectivity, radial point interpolators.
Additionally, the 2D elastic solid mechanics formulation for the plane
stress state combined with the RPIM, assuming the Galerkin weak
form, is shown. In Section 3, first, the rate-independent standard
damage theory is formulated based on a Helmholtz free energy
function. Furthermore, the foregoing damage formulization is extended
to the non-local fashion. Besides, the non-linear return-mapping
algorithm of the numerical implementation is also introduced in
Section 3. In Section 4, notched-three-point-bending concrete beams
are considered and solved with the proposed computational approach.
Convergence studies are performed aiming to accomplish the optimum
non-local damage characteristics. Then, the results obtained are
compared to the experimental solution. The manuscript ends with
the final remarks and conclusion, in Section 5.

2. Meshless method

In this work, an advanced discretization meshless technique, the
Radial Point Interpolation Method (RPIM), is exerted [43,44]. The
RPIM is an interpolator meshless method and forces the nodal
connectivity using the influence domain concept. The background
integration mesh (required to integrate numerically the integro-differ-
ential equations) is constructed using a background regular lattice filled
with integration points respecting the Gauss Legendre quadrature
principle.

In meshless methods the nodal cloud discretizing the problem
domain does not form a mesh, because no previous information
regarding the relation between each node is required to construct the
interpolation functions [41].

2.1. Numerical integration and nodal connectivity

Similar to FEM, meshless methods are classified in discrete numerical
approaches. In meshless methods the domain is discretized with a nodal
distribution X x x x xΛ= { , ,…, } ∈ Ω ∈N i1 2

2, being N the total number
of nodes discretising the problem domain. Then, a background integration
mesh, is constructed, Q x x x xΛ= { , ,…, } ∈ Ω ∈Q I1 2

2, being Q the total
number of integration points discretising the problem domain. Within the
RPIM, the integration mesh is completely independent on the nodal mesh
and it is required to numerically integrate the integro-differential relations
governing the studied phenomenon, the weak-form of Galerkin. As it is
well-known, in the FEM formulation, the background integration mesh is
constructed using the geometry of the elements and it can be accurately
defined because the order of the polynomial shape functions, obtained
from the nodal arrangement of the assumed finite element, is known.
Hence, it is feasible to determine the number of integration points existing
in any integration cell in advance accurately [1,44,45]. However, since in
meshless methods the degree of shape function is undisclosed, this pre-
definition is out of question.

Nevertheless, Wang et al. [46] suggested an integration scheme
acceptable for RPIM formulations. First, the problem domain is
divided in a regular lattice, forming a quadrilateral grid, with no voids
or overlaps. Then, each quadrilateral is filled with integration points
respecting the Gauss-Legendre quadrature principle [43]. The litera-
ture shows that each integration cell should contain 3 × 3 integration
points for a nodal arrangement as the one presented in Fig. 1.

Regarding the nodal connectivity, the RPIM uses the influence-
domain concept [43]. This concept implies that each integration point
xI has to search in the problem domain for the n nearest nodes.
Therefore, each integration point xI will possess its own influence-
domain. This concept will permit to construct the shape functions of
each integration point xI . This issue is described with detail in the
literature, see e.g. [43,44].

The performance and accuracy of the final solution is strongly
influenced by the size of the influence domains. Thus, it is important to
allocate approximately the same number of nodes on each influence
domain [43]. In the literature, it is possible to find some meshless

Fig. 1. - An integration cell with 3×3 integration points in the discrete model [45].
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