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A B S T R A C T

Seeking to validate a solution technique for Helmholtz problems, the Boundary Element Method with Direct
Integration, which applies radial basis functions to approach the inertia term, is used to solve numerically
problems governed by Helmholtz Equation. The standard Boundary Element formulation that employs the
fundamental solution correlated to the Helmholtz Equation and has the frequency of excitation as argument is
used for comparison. Thus, examples comprising the direct solution of Helmholtz problems are solved with both
Boundary Element formulations and then their results are compared with available analytical solutions.

1. Introduction

The great economic and industrial interest resulting from the
exploration of oil deposits, made by modern seismic analysis technol-
ogies, produces intense development and improvement of numerical
methods in the area of dynamic of structures, seismic data inversion
and many others. Many initiatives in this direction can be observed,
especially the improvement of numerical processing algorithms
coupled with powerful discrete methods, such as the Finite Element
Method and the Finite Difference Method. Such initiatives are justified
due to the huge computational storage and processing effort required
in the treatment of discrete systems with many millions of degrees of
freedom. Particularly, this problem is aggravated in the case of 3D
dynamic response, since an incremental scheme to advance over time is
required.

Due to the unattractive features of a matrix organization, the
Boundary Element Method (BEM) has appeared in the background
of these applications, which does not mean there is no significant effort
in its research context, aiming to improve its mathematical flexibility
and to decrease the computational storage effort without losing the
quality of its results.

Part of this effort has been made through alternative formulations
based on the use of interpolation procedures using radial basis

functions [1], since many problems of practical interest are not
expressed in terms of differential equations whose operators are self-
adjoint or else the inverse integral form is too complicated. The use of
these functions also allows the choice of a series of procedures that
may, under certain conditions, greatly simplify the processing of the
response.

With respect to dynamic problems, there are contents of undeniable
interest for the BEM, in which is not demanded huge computational
effort, as occurs in step by step time integration procedures. Two
important cases consist of analysis of the modal spectrum of the
response, which requires as first step calculating eigenvalues and
analysis in the frequency domain. These problems are ruled by the
Helmholtz Equation. The BEM already has an inverse integral for-
mulation associated with this problem, which uses a fundamental
solution which depends on the excitation frequency. Despite its
elegance, accuracy and compliance with the mathematical formalism,
this formulation presents difficulties related to computational storage
effort, and relative lack of flexibility in dealing with problems not
concerned with determining directly the response to a known excite-
ment. The solution of a simple eigenvalue problem is one of those
limited cases. The matrix related to the system inertia is dependent on
the, eigenfrequency, preventing following the classic matrix formula-
tion used for solution of eigenvalue problems.
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In this sense, a first major contribution came with the development
of the Dual Reciprocity Boundary Element formulation (DRBEM) [2]
that uses radial basis functions as auxiliary tool. The DRBEM allows
accessible simulation of transient cases, characteristic value problems,
dynamic response problems, and problems characterized by domain
sources or actions, which were previously solvable only with costly and
relatively complex methods. Although flexible and presenting reason-
ably results, the DRBEM is exposed to certain numerical inaccuracies,
primarily due to matrix conditioning problems deriving from the need
of imposing interpolation basis points to represent domain properties,
commonly called poles [3].

More recently, it was proposed a new technique based on the use of
radial functions, called Direct Radial Basis Interpolation using
Boundary Integration (DIBEM) [4].

Unlike DRBEM, the DIBEM formulation proposed here does not
require construction of two auxiliary matrices by multiplying classic
boundary element matrices H and G because it directly approximates
the complete integral kernel, similar to what is done in an interpolation
process, using only one primitive function. Only the transformation of a
domain integral into a boundary integral makes DIBEM different from
simple interpolation. Therefore, a wide range of different radial
functions and a huge number of poles can be used without instability
problems, which commonly occur when using the DRBEM.

This work seeks to accurately compare the performance of DIBEM
in face of the traditional formulation of the BEM using the fundamental
solution depending on the frequency (FSBEM) [5]. There is no
expectation that DIBEM results be superior, since in this technique
the system inertia is approximated by radial functions. Thus, when
dealing with the high frequencies, there is need for better characteriza-
tion of the system inertia, and under these conditions the approach
dictated by DIBEM will certainly provide more inaccurate results.

However, the DIBEM is a technique more versatile than the
FSBEM. Its mathematical model allows a wider range of applications
using simpler fundamental solution. Unlike the DRBEM, many type of
radial basis function may be used without numerical inaccuracies or
instabilities. A simple scheme using primitive functions avoids domain
integrations, as it will be shown herein.

Anyway, it is important to perform a comparison between the two
boundary element formulations concerning the solution of the
Helmholtz problems, in which the accuracy is evaluated: this is the
main objective of the present study.

2. Helmholtz equation

The Helmholtz equation is one of the most important equations of
mathematical physics and engineering. It can be understood as a
special case of the generalized scalar field equation in which a potential
u (X), where X=X (x1, x2), is subjected to a diffusive action generated
by the Laplacian operator and reacts proportionally, such as:

u k uX X∇ ( ) = − ( )2 2 (1)

The meaning of the proportionality constant k depends on the
physical problem addressed.

One reason for the great importance of the Helmholtz equation is
that in dynamic analysis, it can be interpreted as the time harmonic
representation of the Acoustic Wave Equation given by:

U t ρ
E
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c

U tX X X∇ ( , ) = ¨ ( , ) = 1 ¨ ( , )2
2 (2)

Where c is the propagation velocity of the acoustic wave, function of the
ratio between the bulk modulus and the density [6] and U(X) is the
spatial response of the system to any excitations with generalized
modal content. In the particular case in which one seeks to determine
the response produced by a variable excitation whose frequency ω is
known, the potential U(X,t) is given by:

U t u eX X( , ) = ( ) iωt− (3)

In Eq. (3) i is the imaginary unit and U (X) is the spatial response of
the system to the harmonic excitation ω. Thus, the second derivative of
U(X,t) with respect to t follows from Eq. (3) to be:

t ω u eX XÜ( , ) = − ( ) iωt2 − (4)

The application of the Laplacian operator in Eq. (3) and its
substitution into Eq. (2) along with Eq. (4), results in the Helmholtz,
where k is equal to (ω/c). Furthermore it is clear that the significance of
the potential u(X) in this case is simple amplitude response, stationary,
but which varies from point-to-point in the field considered.

In reality, the problems governed by the Helmholtz equation can be
divided into three groups; direct problems, eigenvalue problems and
inverse problems.

In the direct problems, the aim is to determine the dynamic
equilibrium response u(X) according to a known set of boundary
conditions and given value of frequency ω. This is the case discussed in
this paper.

In eigenvalue problems, we seek to find all the values of frequen-
cies, called natural frequencies usually denoted by ωn, capable of
generating self equilibrated responses in the system if no external
excitations exist. Such frequencies are named natural frequencies or
eigenvalues.

In the inverse problem, the system properties are determined
through knowledge of applied excitations and the system response.

3. Helmholtz fundamental solution

The Helmholtz fundamental solution is a transfer function that for a
given frequency transfers effects of a concentrated force represented by
a Dirac delta function from a source point to a field point, the former
being the point where the Dirac delta function acts,the latter being the
point where the response is measured. Green's function is a denomi-
nation also often employed mainly when certain boundary conditions
are satisfied. Although contemporary, the study of Green's functions
has acquired greater generality and has been encompassed in the
context of the Theory of Distributions [7,8].

Therefore, given a two dimensional infinite domain, the funda-
mental solution u*(X,ξ,k=ω/c) is dependent of frequency ω, and of
source ξ and field X points location, u* its normal derivative q*(X) in η
direction, generated at the field point X for an arbitrary source point ξ
located at an Euclidean distance r of it [5,9], are given by:
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In Eq. (6), K0 and K1 are Bessel functions, respectively of first and
second types.

4. BEM with fundamental solution dependent of frequency

In this work, the formulation of the BEM with frequency dependent
fundamental solution, named FSBEM, is based on the use of basic
mathematical tools of the Theory of Integral Equations. The integral
equation associated to the Eq. (1), using as auxiliary function the
frequency dependent fundamental solution, Eq. (5), is given as shown
below:

∫ ∫u u dΩ k u u dΩX ξ X X ξ X∇ ( ) *( ; ) = − ( ) *( ; )
Ω Ω

2 2
(7)

Where Ω represents the domain.
The application of integration by parts and the divergence theorem

on Eq. (7), operations well documented in literature [10,11], consider-
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