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A B S T R A C T

To evaluate the crack-tip field intensity factors of a piezoelectric crack with any inclined angle, the current
widely-used interaction integral method (I-integral) is here extended to the boundary element applications
under some coordinate transformations. As well, a new modified crack closure integral method (MCCI) is
proposed by considering the discontinuous quarter-point singular elements for the crack-face discretization
arising from the dual boundary element method (BEM). This dual BEM involves the strongly singular
displacement boundary integral equations (BIEs) for the external boundary and the hypersingular traction BIEs
for the crack faces. The crack-tip fracture parameters evaluated by the I-integral and MCCI are verified by the
existing analytical solutions and meanwhile, compared with those results achieved by the classical displacement
extrapolation method and the J-integral. Three examples are presented to show the high accuracy of the
interaction integral method and the improvement of MCCI for the piezoelectric crack problems.

1. Introduction

From the viewpoint of fracture mechanics, of importance is the
near-tip field which can be characterized as field intensity factors. For a
piezoelectric crack, they include the classical mechanical stress inten-
sity factors (SIFs) and additional electric displacement intensity factor
(EDIF), which play a vital role in the design of the smart materials in
engineering applications [16].

As we know, the field intensity factors can be obtained analytically
for some fundamental crack problems with regular geometrical con-
figuration under simple loading conditions ([9,19,31]). Further the
solutions to general crack problems may resort to some efficient
numerical methods involving the finite element method (FEM), the
extended FEM (XFEM), the boundary element method (BEM), various
meshless methods, etc. As a semi-analytical method and dimension-
ality reduction, the BEM has some significant advantages over other
numerical techniques in dealing with crack problems [6]. Meanwhile,
the extended FEM pioneered by [1] in terms of the partition of unity
has achieved considerable success in dealing with boundary value
problems with discontinuities in the last decades. No matter which
numerical method is used, the most important and key task is to
evaluate the relevant field intensity factors efficiently and accurately.
Thus the singularity of the mechanical and electrical fields at the crack-
tips must be described somehow in the formulations.

Based on Stroh's formalism to treat dislocations and line charges,
the displacement jumps and the voltage across the crack faces can be
modeled by a continuous distribution of dislocations [19]. Then the
jumps can be related to the field intensity factors, which is well-known
as the displacement extrapolation method (DEM). In the same way, the
asymptotic singular stress and electric induction fields on the crack
plane can be expressed as functions of the field intensity factors
referred to as the stress matching method [14,2]. The crack-tip stess
field behaves a common square root singularity which results in the
difficulty of effectively numerical computation. The crack-tip tractions
and charge are always approximated by numerical interpolation which
influence the accuracy of this method. So the stess matching method
was seldom used in numerical applications. In contrast, the crack
opening displacements can be directly and efficiently obtained by any
direct BEM. Because of its simplicity and effectiveness, DEM has been
the basis to determine the field intensity factors in BEM [12,20,22,5,8].
These two techniques are directly based on the field quantities on the
boundary or internal points.

Other than the direct techniques, there are still some energy based
methods existing. Based on the concept of the energy-momentum
tensor and conservation laws for an elastic plane, the well-known path-
independent J-integral was obtained by Rice [25] and further extended
to anisotropic piezoelectric problems by Pak [18] and [31], which is
verified to equal to the crack-tip energy release rate (ERR). The contour
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integral appearing in the J-integral cannot be accurately evaluated for
any domain-type numerical methods such as FEM, because it is highly
sensitive to the element meshing. A factitious continuous function
should be introduced to transform this contour integral into a domain
integral. This crack-tip ERR can be related to the field intensity factors
by an Irwin relation. But is not adequate to decouple them for any
mixed-mode fracture problems or multi-field coupling systems because
of the arising of some additional electric or thermal modes. Then
Nishioka et al. [17] proposed a component separation method referred
to as J-integral method. But analogous to DEM, the accuracy of the
extraction is basically affected by the effectiveness of the numerical
results of the crack opening displacements [12]. To avoid this, the
interaction integral method was first proposed by Stern et al. [29] to
solve mode-I and mode-II SIFs separately for 2D static mechanical
problems. Wang et al. [33] extended this method to anisotropic solids.
By a superposition of the actual state with an appropriate auxiliary
state of analytical solutions, the interaction integral (I-integral) is
arisen for extracting the intensity factors. Compared with J-integral,
the I-integral has generated a great interest for its convenience in
decoupling the field intensity factors. Recently, this method was
extended to homogeneous piezoelectric media [11,7] and further to
nonhomogeneous piezoelectric materials [24,34]. This technique is
also well suited to the BEM due to the ability of the method to compute
accurately the internal fields. Aliabadi and his group [21] used the J-
integral in the dual BEM as an accurate technique to compute mixed
mode stress intensity factors in isotropic materials and further
extended to anisotropic plates [28]. But to the authors' knowledge,
this method has been seldom exploited in the boundary element
procedure to obtain the field intensity factors of piezoelectric cracks
[12].

An alternative method to obtain the total ERR is based on a crack
closure integral. This technique is first implemented in the FEM by
Rybicki and Kanninen [26]. A linear variation of the displacement field
around the crack tip was assumed and, consequently, the element
ensures a constant strain field. They termed the method as modified
crack closure integral technique (MCCI). Later many investigators have
employed it and shown its effectiveness in accurate calculation of the
SIFs, even for mixed mode crack problems. Local smooth technique
was proposed by Ramamurthy et al. [23] and Sethuraman and Maiti
[27] imposed on the crack line displacement and stresses using the
nodal data. Matti et al. [13] has adapted the MCCI procedure into the
BEM for the evaluation of the SIFs in elastic materials. Mukhopadhyay
et al. [15] extended this method to thermal crack problems and Lei
et al. [12] to piezoelectric crack problems. But from the results, we can
found that the MCCI method can achieve an accuracy of around 3–5%
for thermal crack problems using either quadratic or quarter point
element [15] and about 5–6% for piezoelectric cases [12]. This
accuracy is much worse than J-integral method or DEM.

In this paper, the dual BEM based on the strongly singular
displacement boundary integral equations (BIEs) for the external
boundary together with the hypersingular traction BIEs for the crack
faces are used to study some crack problems in piezoelectric materials.
The electrical boundary conditions on all crack-faces are assumed to be
impermeable. A collocation method is adopted for the spatial discre-
tization. Discontinuous quarter-point elements are integrated into the
formulation to capture the crack-tip behavior. The I-integral technique
is exploited in this BEM to evaluate the fracture parameters of
piezoelectric cracks. Additionally, the MCCI presented in Lei et al.
[12] is further modified according to the discontinuous quarter point
elements. For any slanted crack, some necessary coordinate transfor-
mations are detailed and compared for these methods. The results are
verified by the existing analytical solutions and compared with those
evaluated by the classical DEM and J-integral methods. The effective-
ness and accuracy of the I-integral and the MCCI are demonstrated in
some examples for evaluating the stress and electric displacement
intensity factors.

2. Boundary integral equations for piezoelectric materials

2.1. Governing equations and boundary conditions

Let us consider a two-dimensional (2D), homogeneous, and linear
anisotropy piezoelectric solid in the domain Ω with the boundary Ω∂ .
To derive the governing equations and the boundary conditions for
piezoelectric materials by the variation principle [19], an electric
enthalpy density h is defined as

h ε E C ε ε κ E E e ε E( , ) = 1
2

− 1
2

− ,ij i ijkl ij kl ij i j ikl kl i (1)

where Cijkl are the components of the elasticity tensor measured in a
constant electric field, κij are the dielectric constants measured at
constant strain, and ekij are the piezoelectric constants. In Eq. (1), εij
and Ei are the strain tensor and the electrical field vector defined by the
following gradient equations

ε u u E ϕ= 1
2

( + ), = − ,ij i j j i i i, , , (2)

where ui and ϕ denote the elastic displacements and the electric
potential, respectively.

By taking h to be the Lagrangian function and employing calculus of
variation, the constitutive relations

σ C ε e E D e ε κ E= − , = + ,ij ijkl kl lij l i ikl kl il l (3)

the equilibrium equations without any body forces or free electrical
charges

σ D= 0, = 0,ij i i i, , (4)

and the boundary conditions

σ n t D n q= , = −ij i j i i s (5)

are obtained [19], Where tj and qs are the applied surface traction and
electrical charge, respectively. In Eqs. (1)–(5) and throughout the
paper, a comma denotes the partial differentiation and the summation
over repeated indices is applied with all Latin indices ranging from 1 to
2.

2.2. Crack model and dual BEM for a piezoelectric crack

Consider an impermeable crack embedded in a poled piezoelectric
plate as shown in Fig. 1. The piezoelectric plate is transversely isotropic
elastic with a hexagonal symmetry of class 6 mm with the x2-axis as the
poling direction and the x x−1 3-plane as the isotropic plane.

Fig. 1. A Griffith crack under remote loadings σ22
∞ and D2

∞ or E2
∞.
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