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The numerical manifold method (NMM), combined with the precise time integration method (PTIM), is

Crack proposed for thermal shock fracture analysis. The temperature and displacement discontinuity across crack
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faces is naturally portrayed attributing to the cover systems in the NMM. The crack tip singularities are
characterized through the use of asymptotic bases in the approximations. The discrete equations for transient
thermal analysis are firstly solved with the PTIM and then the thermoelastic study is performed. With the
interaction integral, the stress intensity factors are computed. Several examples are tested and the nice

consistency between the present and existing results is found.

1. Introduction

Engineering equipment such as the aero-engines, gas turbines and
pressure vessels is frequently exposed to thermal shock. Under certain
conditions, thermally induced stresses may cause the fracture and
failure of cracked facilities. Consequently, the study of the behavior of
cracked solids under thermal shock is of great importance. In light of
the significance, a lot of work has been carried out during the past
several decades. Many researchers focused on the analytical solutions.
Oliveira and Wu [1] determined the thermal stress intensity factors
(TSIFs) of axial cracks in hollow cylinders under thermal shock using
the closed form weight function formula. Noda and Ashida [2] adopted
the successive approximation, Fourier integral and Bessel series to
solve transient thermal annular crack problem in an infinite transver-
sely isotropic cylinder. Lee and Kim [3] calculated the TSIFs of
elliptical surface cracks in thin-walled and thick-walled cylinders with
the modified Vainshtok's weight function method. Noda and Wang [4]
applied the approach of singular integration equation to tackle the
thermal shock responses of the functionally graded materials (FGMs)
with collinear cracks. Shahani and Nabavi [5] used the finite Hankel
transform and the weight function method to compute the TSIFs of
internal semi-elliptical crack in a thick-walled cylinder subjected to
transient thermal stresses. Wang and Li [6] analyzed the transient
thermoelastic fracture of piezoelectric material with the Laplace
transformation and integral equation method.

Although widely applied, analytical solutions are generally limited
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to simple configurations (e.g., single or periodic cracks in infinite or
semi-infinite mediums under regular initial or boundary conditions).
For problems with finite dimensions, arbitrary cracks or under complex
loadings, numerical tools such as the finite element method (FEM), the
boundary element method (BEM) and the extended finite element
method (XFEM) are much more popular. Emmel and Stamm [7]
computed the transient TSIFs for cracked rectangular plate and hollow
cylinder with the FEM. Magalhaes and Emery [8] inspected the effects
of transient thermal loads on crack propagation in brittle film-substrate
structure by the FEM. Through the three-dimensional elastic-plastic
FEM, Kim et al. [9] evaluated the integrity of vessel with subclad crack
under pressurized thermal shock. Prasad et al. [10] applied the dual
BEM and path-independent J-integral to investigate the two-dimen-
sional (2D) transient thermoelastic crack problems. Considering crack
closure conditions, Giannopoulos and Anifantis [11] obtained both
steady and transient TSIFs of 2D bimaterial interfacial cracks by the
BEM. With the uncoupled thermoelastic theory, Zamani and Eslami
[12] implemented the XFEM to model the effect of both mechanical
and thermal shocks on 2D cracked solids. Rokhi and Shariati [13]
studied the response of cracked FGMs under thermal shock with the
XFEM in the framework of coupled thermoelasticity.

In the past two decades, considerable efforts have been put on to
the development of the numerical manifold method (NMM) proposed
by Shi [14]. The soul of the NMM lies in the use of finite cover concept,
which has been adopted by Bathe and his coauthors [15-17] to
improve the FEM solutions most recently. Benefiting from the use of
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dual cover systems (i.e., the mathematical cover and the physical cover)
[14,18], the NMM is very powerful in discontinuous analysis (e.g., in
solving crack or inclusion problems). The major highlights of the NMM
for crack modeling can be summarized in four aspects: (1) the
mathematical cover can be independent of all domain boundaries
including cracks; (2) the discontinuity of physical field across crack
faces can be manifested in essence; (3) the local property at crack tip
zone can be well captured through the use of associated local functions
in the approximation, and (4) higher-order approximations can be
achieved through the use of higher-order local functions on a fixed
mathematical cover. To date, the NMM has been successfully improved
to solve various stationary cracks and crack growth problems in
homogeneous [19-30] and heterogeneous materials [31-35].

In the present paper, the NMM is further extended to tackle 2D
stationary crack problems under thermal shock. The solution proce-
dure is generally divided into two parts: Firstly, the transient heat
diffusion problem is analyzed and the corresponding NMM discrete
equations are solved with the precise time integration method (PTIM)
[36], which has absolute stability, immunity to oscillations and time-
step-independent precision. Subsequently, the calculated temperature
fields at selected instants are imported into the thermoelastic part to
extract the TSIFs.

The remaining of the paper is addressed as follows. In Section 2, the
governing equations and associated boundary and/or initial conditions
are provided. The NMM formulations for both transient heat conduc-
tion and thermoelastic analysis are derived in Section 3. Section 4
presents the details of the PTIM for transient heat conduction analysis
and the spatial integral scheme as well. To verify the proposed method,
several numerical examples are tested in Section 5. Finally, the
concluding remarks are addressed in Section 6.

2. Statement of problems

As shown in Fig. 1, consider a cracked isotropic homogenous
physical domain £ enclosed by the boundary I" in the unidirectional
coupling transient linear thermoelasticity (i.e., the thermal loading
affects the displacement, strain and stress fields, but not vice versa).
Ignoring both the heat source and the body force, the governing
equations for this problem are [10]

oT(x, 1) _
pc—al + Vqx, 1) =0 )
Vie=0 (2

where p is the density and c is the specific heat at constant pressure. 9
denotes partial derivative. T(x, ¢) is the temperature with x € 2 and ¢
the time. The heat flux q is determined by the Fourier's law as

Fig. 1. A cracked homogeneous body in 2D transient linear thermoelasticity.
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q = — kVT with k the thermal conductivity. The stress tensor ¢ is
expressed by the generalized Hooke's law as ¢ = C: (¢ — &;) with C the
fourth-order Hooke tensor, &€ = Vu the total strain tensor and
e; = a(T — Tp)I the thermal strain tensor. u is the displacement vector,
a is the thermal conductivity and T is the reference temperature.V.,V,
and I are, respectively, the gradient operator, the symmetric gradient
operator and the second order identity tensor.
The associated boundary conditions for Egs. (1) and (2) are

Tx, ) =Tt (x€I}) 3)
qx, DM =g, 1 (Xl 4
ux) =ux) (x€1,) (5)
o(x)n=tx) (x€I) (6)
with /7 the temperature boundary, I, the flux boundary, I, the
displacement  boundary and I; the traction boundary

(Gul=Lul =T, InI =1I,nI =@. The crack boundary I, is
a part of natural boundary and is assumed to be adiabatic in heat
conduction analysis and traction-free in elastic analysis. T, 7, u and t
are, respectively, the prescribed temperature, flux, displacement and
traction on corresponding boundary. n is the outward unit normal to
the domain.

The initial condition for Eq. (1) is

Tx,0) =T, xe€Q) 7

3. Thermal shock fracture analysis by the NMM
3.1. NMM approximations

In the NMM, to solve a crack problem, the mathematical cover
(MC), composed of a series of mathematical patches (MPs), is firstly
built. Broadly speaking, the MP, formed by mathematical elements, can
be of any shape and overlapped. The MC may be independent of all
domain boundary (including cracks) but must be large enough to cover
the whole cracked domain. On each MP, a partition of unity (PU) [37]
weight function is defined. Next, the physical patches (PPs), the
collection of which is termed as the physical cover (PC), are formed
by the intersection of MPs and physical domain. On each PP, the local
function is constructed to represent the local physical property. Then,
the manifold elements (MEs) are generated through the shared region
of PPs. To make the above concepts and procedures clear, an illustrated
example in Fig. 2 is further adopted.

Consider the physical domain 2 = Q, U £, in Fig. 2a. The MC
consisting of two rectangular MPs, i.e., M1 and M, in Fig. 2b, is chosen
to cover the whole domain. The intersection of the physical domain and
the MPs gives 4 PPs in Fig. 2¢, that is, P; and P, from M, and P5 and
P4 from M,. Above 4 PPs finally generate 7 MEs, numbered ey, es...,
and e; in Fig. 2d, where the bracketed contents represent the
associated PPs.

Following the aforementioned process, we can obtain the NMM
approximation on each ME by pasting the local functions using the
associated weight functions. Accordingly, for the present problem, the
temperature and displacement field on any ME e is approximately
expressed as

T, 1 = 3 wETx, 0

Py ©))
u'(x) = Z W (X)u,(x)

i=1

)

where n, is the amount of PPs shared by e. w(x) is the PU weight
function defined on the MP containing the ith PP. Ti(x, r) and u,(x) are,
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