Engineering Analysis with Boundary Elements 75 (2017) 57-64

ENGINEERING ™%

Contents lists available at ScienceDirect ANAYSES i
BOLNRARY

Engineering Analysis with Boundary Elements

journal homepage: www.elsevier.com/locate/enganabound

A note on the use of the Companion Solution (Dirichlet Green's function) on
meshless boundary element methods

@ CrossMark

H. Power™", N. Caruso™‘, M. Portapila”®

2 The University of Nottingham, Faculty of Engineering, Department of Mechanical, Materials and Manufacturing Engineering, Nottingham, NG7 2RD UK
b CIFASIS - Centro Internacional Franco Argentino de Ciencias de la Informacion y de Sistemas, CONICET, Bv. 27 de Febrero 210 Bis, Rosario, S2000EZP
Argentina

¢ Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Pellegrini 250, Rosario, S2000BTP Argentina

ARTICLE INFO ABSTRACT

Keywords: Most implementations of meshless BEMs use a circular integration contours (spherical in 3D) embedded into a

DRM local interpolation stencil with the so-called Companion Solution (CS) as a kernel, in order to eliminate the

Companion S.olution contribution of the single layer potential. However, the Dirichlet Green's Function (DGF) is the unique

Green's function Fundamental Solution that is identically zero at any given close surface and therefore eliminates the single layer
potential. One of the main objectives of this work is to show that the CS is nothing else than the DGF for a circle
collocated at its origin. The use of the DGF allows the collocation at more than one point, permitting the
implementation of a P-adaptive scheme in order to improve the accuracy of the solution without increasing the
number of subregions. In our numerical simulations, the boundary conditions are imposed at the interpolation
stencils in contact with the problem boundary instead of at the corresponding integration surfaces, permitting
always the use of circular integration contours, even in regions near or in contact with the problem domain
where the densities of the integrals are reconstructed from the interpolation formulae that already included the
problem boundary conditions.

1. Introduction

When dealing with the BEM for large problems, with or without
closed form fundamental solution, it is frequently used a domain
decomposition technique, in which the original domain is divided into
subdomains, and on each of them the full integral representation
formulae are applied. At the interfaces of the adjacent subdomains the
corresponding full-matching conditions are imposed (local matrix
assembly). While the BEM matrices, which arise in the single domain
formulation, are fully populated, the subdomain formulation leads to
block banded matrix systems with one block for each subdomain and
overlaps between blocks when subdomains have a common interface.
In the limit of a very large number of subdomains, the resulting
internal mesh pattern looks like a finite element grid. The implementa-
tion of the subdomain BEM formulation in this limiting case, i.e. a very
large number of subdomains, including cells integration at each
subdomain has been called by Taigbenu and collaborators as the
Green Element Method (GEM) (see [1]). A similar approach based
on large number of subdomains but using the Dual Reciprocity Method
(DRM) to evaluate the domain integrals at each subdomain, instead of
cell integration, has been referred by Popov and Power [2] as the Dual
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Reciprocity Multi Domain approach (DRM-MD), for more details see
Portapila and Power [3].

Meshless formulations of local BEM approaches, see Zhu et al. [4],
are attractive and efficient techniques to improve the performance of
local BEM schemes. In the meshless BEM the integral representation
formulae are applied at local internal integration subregions embedded
into interpolation stencils that are heavily overlapped. In this type of
approach the continuity of the field variables are satisfied by the
interpolation functions avoiding the local connectivity between sub-
domains or elements needed to enforce the matching conditions
between them. Different interpolation schemes can be employed at
the interpolation stencils, being the moving least squares shape
functions and RBF interpolations the most popular approaches used
in the literature. A major advantage of the meshless local BEM
formulations in comparison with the classical BEM multi domain
decomposition approaches, as the GEM and the DRM-MD, is that
the resulting integrands of the integral representation formulae are all
regular, instead of singular, since the collocation points are always
selected inside the integration subregion.

In the Local Boundary Integral Element Methods (LBEM or
LBIEM) the solution domain is covered by a series of small and heavily

Received 17 June 2016; Received in revised form 4 November 2016; Accepted 4 December 2016

Available online 15 December 2016
0955-7997/ © 2016 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/09557997
http://www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2016.12.002
http://dx.doi.org/10.1016/j.enganabound.2016.12.002
http://dx.doi.org/10.1016/j.enganabound.2016.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.12.002&domain=pdf

H. Power et al.

overlapping local interpolation stencils, where a direct interpolation of
the field variables is used to approximate the densities of the integral
operator, and the boundary conditions of the problem are imposed at
the integral representation formula; i.e. at the global system of
equations [4-9]. In this type of approach, the domains of integration
usually are defined over several stencils, resulting in highly overlapping
integration subregions, in addition to the overlapping of interpolation
stencils.

As is the case of the interpolation stencils, different shapes of the
integration subregion can be considered in the implementation of a
meshless BEM, being a circular shape the most popular one (sphere in
3D). As suggested by Zhu et al. [4] (see also Atluri et al. [10], and most
of today implementations of meshless BEMs), in the case of a circular
integration subregion with a single evaluation point at the centre of the
circle, a Companion Solution instead of the Fundamental Solution can
be used in the integral representation formula of a given problem in
order to eliminate the single layer potential in the integral formulation.
However, it is well known in the mathematical literature, that the
Dirichlet Green's function is the unique fundamental solution that
eliminates the single layer potential from the integral representation
formula, whatever the shape of the integration surface is. For clearness
in the presentation, we provide here the formal mathematical defini-
tion of the different singular solutions considered in this work, i.e.
Fundamental solution, Green's function and Dirichlet Green's function.
A Fundamental solution of a linear partial differential equation (PDE),
or free space Green's function, is a particular solution, i.e. a no unique
solution, of the corresponding nonhomogeneous PDE with a Dirac
delta function as the nonhomogeneous term, which is singular at the
collocation point of the delta function, the Green's function is the
unique solution of the same nonhomogeneous PDE, i.e. with a Dirac
delta function as the nonhomogeneous term and consequently a
singular solution, that satisfies a given homogeneous boundary condi-
tion on a prescribed boundary, consequently, the Dirichlet Green's
function is the corresponding Green's function satisfying a homoge-
neous Dirichlet boundary condition. One of the main objectives of this
work is to show that the so-called Companion Solution (CS) is nothing
more than the Dirichlet Green's function (GF) for a circle collocated at
its origin. This should not be regarded as pure semantic meaning of the
word (Companion or Green's function), which in the opinion of the
authors is important to clarify; since, as shown here, the use of the
centre of the circle as the only collocation point of the integral
formulation significantly restricts the versatility of the meshless
approach.

2. Mathematical formulation and boundary integral
represention formula

Let us consider a boundary value problem defined on a two
dimensional domain Q that satisfies a linear partial differential
equation (PDE) of the following type:

du
V2u(x) = b|x, u(x), —(x) |,
(x) ( (x) ax,-( )) o)
which is written as a non-homogeneous Laplace's equation with non-
homogeneous term given by b, and u (x) is the unknown potential field
at the point x € Q. The problem definition is completed by specifying
the following boundary conditions (BC):

&)

u(x) = ug(x) onlj

du
—(x) = qy(x) on I
011( ) = go(X) 2 3)
where I] U I} = I', with I'1 and I'> are non-intersecting parts of the
domain boundary I, and the functions u, and g are suitably prescribed
functions of x.

The integral representation formula for the above linear PDE in
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terms of the Laplace's fundamental solution is obtained from the
Green's second identity in terms of the superposition of surfaces (single
and double layers) and volume potentials.

c@uE) = fr g (x, Oyux)dr, — fr W (x, E)g(x)dT + fﬂ bu* (x, £)d<2,
)

with & as the evaluation point, also referred to as collocation point, and
u*(x, &) as the fundamental solution of the Laplace problem, which in
the case of two-dimensional problems is given by:

u*(x, &) = Lln( ! ]

2z R(x, &) 5)
where R(x, &) is the distance between the integration points x and
collocation point & i.e. R = |x — £|, and ¢*(x, &) = %(x, £). The con-
stant value ¢ (¢) € [0, 1], being 1 if the point £ is inside the domain and
% if the point & is on a smooth part of the domain boundary I

In the BEM literature, the approach to obtain the above integral
representation formula is sometimes referred to as a weighted residual
or reciprocity approach instead of the Green's second identity, which is
a misuse of a concept (a weighted residual is an approximate formula-
tion while the Green's identity is an exact representation).

The above integral representation formula is the basis of any
meshless BEM approach, where the integration surface I and domain
Q are chosen as integration subregions, I'; and 2;, embedded inside of
a corresponding interpolation stencils, which are heavily overlapped. If
in the above formulation instead of using the fundamental solution,
u*(x, &), and its normal derivative, ¢*(x, £), the Dirichlet Green's
function, G(x, &) and its corresponding normal derivative, Q(x, &),
are used, follows that Eq. (4) at each integration subregion reduces to:

c©u© = [ ox ouwdr+ [ bGx ode.

I 2 (©
where by definition over the surfaces I'; the value of G is identically
Z€ero.

In the case of a circular integration surface I'; with radius R;, the
Dirichlet Green's function for a source point, &, inside the circle can be
obtained from the circle theorem, and given by (for more details see
Milne-Thomson [11]):

G(x, &) = Lln[

R7R(x, £)?
4r

RIR(x, £)? @)
with the image or reflection point, &, located outside the circle along
the same ray of the source point. In the above expression R (x, &) is the
distance between the field point x and the source point & given by
R(x, £)? = R(X)? + R} — 2R(X)R, cos(0), with R, the distance between
the source point and the centre of the circle, similarly R(x, &) is the
distance between x and the image point &, where
Rx, &) = Rx)? + (R}RD) — 2R(x)(R?/Ro)cos(d), with RY/R, as the
distance from the image point to the centre of the circle and 0 as the
angle between the vectors x and & from the centre of the circle. When
the source point & is located at the origin, i.e. Ry =0, the above
expression for the Green's function reduces to:

R(x))

G(x, &) = iln( 2

®

In the meshless BEM literature, the above expression has been
referred to as a Companion Solution (see Zhu et al. [4]), but as can be
seen from the preceding analysis, the so-called Companion Solution is
none other than the Dirichlet Green's function for a circle evaluated at
its origin. Sladek et al. [12] appear to recognise this when they mention
in their manuscript “it is seen that (8) is the Green's function for the
Possion's equation vanishing on the boundary of the circular subregion
of radius R;”, without giving any further details. As we will show later
this is not just a matter of words meaning, i.e. calling a known function
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