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A B S T R A C T

In this paper, asymptotic homogenization and meshfree Solution Structure Method (SSM) are combined to
develop a hybrid homogenization technique. This hybrid method makes it possible to capture accurate
geometric information of material microstructure, directly from micrographs or Computed Tomography (CT)
scans, and offers a completely automated numerical procedure. Homogenization methods often employ FEA to
incorporate realistic geometry of the material's microstructure. However, generating a finite element mesh from
images or 3D voxel data could be tedious, error-prone, and expensive. Also, in many practical situations,
considerable manual modifications are often required. On the other hand, the SSM uses implicit mathematical
functions to represent the geometric model. It could be implemented using different types of basis functions,
either on a non-conforming structural grid or cloud of points. Adaptive numerical and geometric algorithms
assure good geometric flexibility of SSM in handling complex structures. Furthermore, to accommodate
material homogenization equations, the SSM is extended so it can provide the exact satisfaction of periodic
boundary conditions without using any spatial meshes. To validate the developed method, the architecture of a
computer software package is designed that provides an automated computational pipeline for material
homogenization. Numerical examples are provided to evaluate the developed platform against other methods
and previously published data.

1. Introduction

Advances made in different technological fields have been linked to
innovative designs of new materials such as composites which are
made from dissimilar constituents formed into an inhomogeneous
structure with a methodical or random geometric distribution.
Composite materials are widely used in different industrial fields like
thermal and acoustic insulations, lightweight structures, biomedical
devices, etc. Mechanical properties of such materials are highly
dependent on the properties of the constituents, their spatial distribu-
tion, geometry and volume fraction of inclusions.

The early analytical methods for finding the homogenized proper-
ties of composite materials were relatively simple, such as rule of
mixtures [1]. This method was developed into a more advanced
variational technique to predict lower and higher bounds of effective
properties [2,3]. Later a self-consistent method was proposed which
was capable of taking the geometry of composite fibers into considera-
tion [4]. In early 70's Mori-Tanaka method was introduced to calculate
the average internal stress in a matrix of composite materials [5]. Also,

a modified version of this method was used to evaluate the effective
properties of composites [6].

The applications and computational issues of Finite Element
Analysis, as one of the most popular numerical methods for solving
homogenization problems, have been studied extensively [7–10]. FEA
was used to investigate stress and strain distribution of orthotropic
composites and determining their effective strain energy [11]. Similar
studies were performed to find out homogenized shear and Young's
modulus of reinforced composites [12,13]. Also, effective thermal
expansion coefficient for two-phase materials was investigated by
applying an FEA homogenization scheme [14]. Numerical results of
FEA homogenization were applied in topology optimization for struc-
tures of anisotropic materials [15,16].

In an FEA package, it is necessary that a computer model of the
domain of interest be generated. Then this model has to be discretized
into elements via meshes, which should accurately represent the
geometry of the model and also be suitable for prescribing boundary
conditions. Especially when dealing with homogenization problems,
the periodic nature of their boundary conditions could create undesir-
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able complications. The classical method to impose the periodic
boundary condition requires identical meshes on opposing sides of
the domain, and as the geometric features of the structure gets more
complicated, this condition will be difficult to satisfy for arbitrary
meshes [17–19].

In recent years, several methods have been developed to generate
finite element models based on micrograph images of material micro-
structure [20,21]. These methods use the pixel color data stored in
microstructure images to separate different phases of material and
extract corresponding geometry of each phase. Even with the imple-
mentation of such tool, there is still a considerable amount of manual
work required to modify the model and generate a geometry conform-
ing mesh suitable for finite element studies. In many practical cases,
generating a good quality mesh requires simplifications of the model
which eventually will affect the accuracy of results.

To overcome the drawbacks of the conventional finite element,
meshfree or meshless methods have been developed. The idea behind
the meshfree paradigm was introduced by Kantorovich in 1950s; he
proposed utilizing a solution structure for solving boundary value
problems [22]. Later Solution Structure Method (SSM) was improved
and generalized by Rvachev and his team [23]. He suggested using
functions that vanish on the geometric boundaries in order to satisfy
different types of boundary conditions, and he also proposed an
algorithmic approach for constructing such functions on complex
geometric models using R-functions [23,24]. This algorithm was
successfully implemented for functional representation of a variety of
geometric structures [25]. Also, other methods such as least square
approximation were assessed for generation of functions which has
zero values on the boundaries. This resulted in developing a group of
distance-like functions which provides and approximate distance field
of the points in the domain to its boundaries and can be used to
represent solutions to the boundary value problems providing exact
treatment of the prescribed boundary conditions [26,27]. The theory
behind solution structures and their applications in different fields are
extensively studied in [28–32], and it is shown that implementation of
SSM can eliminate the necessity of constructing a geometry conforming
mesh which provides a considerable geometric flexibility.

In this paper, asymptotic homogenization approach is combined
with the Solution Structure Method. Here we will extend the SSM by
constructing solution structures that satisfy periodic boundary condi-
tions on the domain boundaries.

The main contributions of this paper are (1) combination of the
asymptotic homogenization approach with meshfree Solution Structure
Method; (2) extension of the Solution Structure Method to satisfy
periodic boundary conditions; and (3) development of numerical
algorithms and software tools to support material homogenization in
geometrically complex models. Advantages of the proposed approach
include much higher geometric flexibility that makes it possible to
easily apply the proposed technique to obtain homogenized material
properties from 2D or 3D image data.

This hybrid homogenization technique will inherit careful predic-
tion of homogenized properties from asymptotic homogenization and
great geometric flexibility from Solution Structure Method. Solving
homogenization equations over a representative volume element (RVE)
requires special treatment of periodic boundary conditions, which is
usually done via proper mesh generation [17,33]. Meshfree nature of
the Solution Structure Method makes it possible to exactly satisfy
boundary conditions using so-called solution structures — functions
that combine basis functions, approximate distance fields, and pre-
scribed boundary conditions.

Furthermore, a software prototype is developed using the intro-
duced hybrid method. The salient feature of this platform is the ability
to calculate homogenized mechanical properties of complex micro-
structures directly from raw geometric data: micrograph images and
CT scans. The prototype uses adaptive numerical algorithms and
Solution Structure Method which results in completely automated

procedure with virtually no human intervention. The streamlined
computational pipeline, absence of the finite element mesh generation
makes it possible to provide a fully automated experience from
importing micrograph images to the calculation of mechanical proper-
ties.

Outline for the rest of the paper is: in Section 2 the idea of
MeshFree/Asymptotic homogenization is described and it is followed
by three case studies in Section 3. Section 4 summarizes the concept
and highlights of our research.

2. Hybrid Meshfree/Asymptotic homogenization

To evaluate effective properties of inhomogeneous materials it is
crucial to re-derive governing and constitutive equations in such way
that the effect of microstructural inhomogeneities is taken into
consideration. Homogenization methods provide the necessary tools
to approach this matter. Among different available techniques,
Asymptotic method is capable of analyzing inhomogeneous materials
with high contrast in the properties of their constituents. And in
addition to obtaining effective material properties, it also solves the full
structural problem at micro level [9,34]. Although here we have used
an Asymptotic method, but the developed platform is not limited to
that and can be used to empower any other numerical homogenization
technique.

An inhomogeneous material with periodic inclusions can be
represented by domain Ω in the global coordinate system x and the
spatially periodic RVE associated with domain Y in local coordinate
system y (Fig. 1). The ratio of macro and micro coordinate systems is
defined by ϵ, where ϵ⪡1 (1). In Asymptotic method, if any physical
property of material Ψ( ) can be related to two distinct macroscale (Ω)
and microscale (Y) domains then an expansion in form of (2) can be
written with respect to ϵ [15].

y x=
ϵ (1)

Ψ x Ψ x Ψ x y Ψ x y( ) = ( ) + ϵ ( , ) + ϵ ( , ) + …ϵ (0) (1) 2 (2) (2)

where ϵ → 0, ϵ superscript shows the periodicity of a given variable on
the global coordinate system and Ψ i( ) function are defined in the
domain Ω and they are Y-periodic. On the right-hand side of (2), the
behavior of a physical field Ψ( ) is divided into two parts. The first term
Ψ( )(0) which is only a function of global coordinates represents the
macroscopic (homogenized) part of Ψ and rest of the terms carry the
microscopic effects. By using the expanded form of displacement,
strain and stress functions and substituting them into macroscale
constitutive and balance equations a new form of constitutive equation
can be derived which is valid at microscale [35,36,7]:
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where E is the material stiffness tensor, uk
(0) and uk

(1) relatively show the
components of global and local displacement fields. Mathematical
treatment of (3) is extensively discussed in [35] and [36]. It is shown

Fig. 1. Schematic representation of global and local coordinate systems.
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