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A B S T R A C T

We consider a boundary meshless numerical solution for two-dimensional linear static thermoelastic problems.
The formulation of the problem is based on the approach of Marin and Karageorghis, where the Laplace
equation for the temperature field is solved first, followed by a particular solution of the non-homogenous term
in the Navier-Lamé system for the displacement, the solution of the homogenous equilibrium equations, and
finally the application of the superposition principle. The solution of the problem is based on the method of
fundamental solutions (MFS) with source points on the boundary. This is, by complying with the Dirichlet
boundary conditions, achieved by the replacement of the concentrated point sources with distributed sources
over the disk around the singularity, and for complying with the Neumann boundary conditions by assuming a
balance of the heat fluxes and the forces. The derived non-singular MFS is assessed by a comparison with
analytical solutions and the MFS for problems that can include different materials in thermal and mechanical
contact. The method is easy to code, accurate, efficient and represents a pioneering attempt to solve
thermoelastic problems with a MFS-type method without an artificial boundary. The procedure makes it
possible to solve a broad spectra of thermomechanical problems.

1. Introduction

In a large variety of engineering systems, such as nuclear power
plants, engines and electronic devices, the simultaneous effects of
thermal and mechanical loads on the parts have to be studied. In
addition, these loads can also substantially influence natural systems,
such as the deforming or cracking of rock, ice, etc. The numerical
studies of such systems are, in a large majority of the problems, based
on the finite-element method (FEM) [1]. However, there have also been
strong developments in mesh-reduction methods in which polygon-like
meshes are reduced or avoided [2,3]. A typical example is the
boundary-element method (BEM) [4], which is based on a weak
formulation with the fundamental solution as a weight function.
Another, much simpler, alternative is the method of fundamental
solutions (MFS) [5], where the trial functions rely on the fundamental
solution and collocation. In the BEM and the MFS, the discretization
needs to be performed only on the boundary in the case of the existence
of the fundamental solution to the problem. The main advantage of the
MFS stems from the fact that only the “pointisation” of the boundary is
needed, which completely avoids any of the integral evaluations
required in the BEM and makes no principal difference in the

numerical implementation between the 2D and 3D cases. In the past
decade, the MFS turns out to be applied to an ever-increasing number
of different problems, as indicated in the survey papers [6–8]. The MFS
was, in conjunction with the method of particular solutions (MPS) and
the dual reciprocity method, already applied [9,10] to the numerical
solutions of 3D isotropic linear thermoelasticity problems. Later, the
2D linear thermoelasticity [11] problems were also solved by the MFS.
A recent application of the MFS for inverse boundary value problems in
2D and 3D static thermoelasticity is given in [12,13]. The MFS requires
nodes that are positioned on an artificial boundary located outside the
computational domain to avoid the singularity of the fundamental
solution and at the same time allow for the collocation of the boundary
conditions. The location of the artificial boundary represents the most
serious problem of the MFS and presently has to be dealt with either
heuristically [14] or by using an optimization procedure [15,16] that
requires substantial additional computing time. Young et al. [17,18]
made a pioneering proposal to place the source points at the boundary
in the MFS. In their approach, the diagonal collocation matrix
coefficients were determined directly for simple geometries or by using
the results from the BEM, based on the fact that the MFS and the
indirect boundary integral formulation are similar in nature. A
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subtracting and add-back technique was used in order to avoid the
artificial boundary in [19]. In [20], the diagonal terms are determined
by the integration of the fundamental solution on the line segments,
formed by using neighbouring points, and the use of a constant
solution to determine the diagonal coefficients of the derivatives of
the fundamental solution in different coordinate directions. The group
of W. Chen [21] improved the evaluation of the singular and nearly
singular kernels in the MFS for 2D elasticity problems, based on an
evaluation strategy that was originally derived for the BEM [22]. They
also [23] proposed a non-singular MFS for determining the diagonal
coefficients in the modified MFS by applying a known solution inside
the domain, so that the diagonal coefficients from both the funda-
mental solution and its derivative can be determined indirectly, with-
out using any element or integration concept. Again, this approach is
appealing, stable, and accurate, but it is costly for solving large-scale
problems due to the need to solve the problem twice. The solution also
depends on the choice of the internal reference points. The group also
recently proposed the singular boundary method [24,25], where the
concept of origin-intensity factors is introduced to circumvent the
fictitious boundary. Another very simple desingularised MFS procedure
is the method of regularized sources, where the singular fundamental
solution behaviour is replaced by the nearly singular behaviour [26,27].
The procedure, however, lacks the accuracy of the derivatives on the
boundary. Recently, a new boundary meshless approach called the
non-singular MFS (NMFS) was developed by the present authors
[28,29] for isotropic and anisotropic elasticity problems based on the
boundary distributed source (BDS) method [30]. The NMFS has
recently been extended to solve porous media problems with moving
boundaries [31] and Stokes flow problems [32], and also developed to
solve the multi-body elasticity problems [33] as well as 3D elasticity
problems with displacement boundary conditions [34]. The concen-
trated point sources are, in the NMFS, replaced with the area-
distributed and volume-distributed sources in 2D and 3D problems,
respectively. They represent an analytical integration of the original
singular fundamental solution by preserving the advantage of the
diagonal dominance of the system of equations, while they have no
troublesome singularity issues. Liu and Šarler [28] used the approach
of Šarler [20], which involves the reference solution, to determine the
diagonal coefficients of the derivatives of the fundamental solution. The
problem with the NMFS is that a careful selection is required for the
reference solutions. Recently, Liu and Šarler [35] extended the
approach [36] to solve isotropic elasticity problems. In the present
paper, the developments [35,36] are extended to isotropic thermo-
elasticity problems, based on the formulation of Marin and
Karageorghis [11]. In this new approach, the diagonal coefficients of
the heat fluxes and tractions are determined by assuming the balance of
the heat fluxes as well as the forces. Several numerical examples with
Dirichlet and mixed boundary conditions are presented. The feasibility
and the accuracy of the new approach is demonstrated on a spectrum of
solved problems with inclusions and/or voids, involving displacement
and traction mechanical boundary conditions, as well as temperature
and heat-flux thermal boundary conditions.

2. Governing equations

Consider a 2D isotropic linear thermoelastic solid confined to
domain Ω with boundary Γ . Let us introduce a 2D Cartesian coordinate
system with orthonormal base vectors ix and iy and coordinates px and
py of point P with the position vector p pp i i= +x x y y. The governing
thermoelastic equations for a 2D steady-state heat conduction and
plain-strain thermomechanical equilibrium in an isotropic homoge-
neous medium are
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where T is the temperature, u uu i i= +x x y y is the displacement, v is
Poisson's ratio, E is Young's modulus, h is the coefficient of linear
thermal expansion, and μ E ν= /2(1 + ). The boundary is divided into
two, not necessarily connected, parts Γ Γ Γ= +th T q for the thermal,
and for the mechanical problem Γ Γ Γ= +me u t. On the part ΓT the
temperature boundary conditions are given, and on the part Γq the
heat-flux boundary conditions are given. On the part Γu the displace-
ment boundary conditions are given, and on the part Γt the traction
boundary conditions are given

T T Γ q q Γp p p p p p( ) = ( ); ∈ , ( ) = ( ); ∈ ,T q (3)

u u Γ t t Γ ς x yp p p p p p( ) = ( ); ∈ , ( ) = ( ); ∈ , = , ,ς ς
u

ς ς
t (4)

where T , q , uς and tς represent known functions. The normal heat flux q
on the boundary is related to the temperature gradients by
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where κ is the thermal conductivity, nx and ny denote the coordinates of
the outward normal n at the boundary point p.

In the framework of isotropic linear thermoelasticity, the strain
tensor ε is related to the stress tensor σ through the constitutive law of
thermoelasticity, i.e.,

ε σ σ σ δ hTδ ς ξ x y= − ( + ) + , , = , .ςξ
v
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Eq. (6) can be expressed in terms of the stresses as

σ μ ε ε ε δ Tδ ς ξ x y= 2 [ + ( + ) ] − , , = , ,ςξ ςξ
v

v xx yy ςξ
μ v h

v ςξ1 − 2
2 (1 + )

1 − 2 (7)

where the transformation v v v E E v v′ = /(1 + ), ′ = [1 − ( /(1 + )) ],2

h h v v′ = (1 + )/(1 + 2 ) has to be used for plane-stress problems, and
δςξ is the Kronecker delta
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The tractions tx and ty are defined in terms of the stresses as

t σ n σ n ς x y= + , = , .ς ςx x ςy y (9)

3. Solution procedure

3.1. Fundamental solution and particular solution

The fundamental solution T* of the Laplace heat balance Eq. (1) for
the 2D steady-state heat conduction in an isotropic homogeneous
medium is
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where p pp( , )x y is a collocation point, s ss( , )x y is a source point,

r p s p s= [( − ) + ( − ) ]x x y y
2 2 1/2, and r0 stands for a scaling constant,

chosen to ensure that the fundamental solution differs from 0 in the
computational domain and at the boundary. The value of the scaling
constant should be chosen to be reasonably larger than the maximum
distance r of the problem. The corresponding fundamental normal heat
flux is (see Appendix A for explicit formula)
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