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Dynamic fracture analysis of the soil-structure interaction system by using the scaled boundary finite element
method is presented in this paper. The polygon scaled boundary finite elements, which have some salient
features to model any star convex polygons, are employed for modelling the near-field bounded domains. A
procedure for coupling the bounded domains with an improved continued-fraction-based high-order transmit-
ting boundary is established. The formulations of the soil-structure interaction system are coupled via the

interaction force vector at the interface. The dynamic stress intensity factors and T-stress are extracted
according to the definition of the generalized stress intensity factors. The dynamic stress intensity factors of the
coupled system are evaluated accurately and efficiently. Two numerical examples are demonstrated to validate

the developed method.

1. Introduction

Many civil engineering investigations and practices show that
cracks commonly appear in the concrete structures and rocks. The
presence of cracks has a great influence on the responses of structures
under the action of several static and dynamic loads [1]. There are two
main numerical challenges in modelling the whole soil-structure
interaction system, i.e.

® stress singularity at crack tips and crack propagation;
® modelling of unbounded domain, i.e. accurate description of radia-
tion damping at infinity.

The finite element method (FEM) has been a predominant numer-
ical method in many fields. However, crack propagation modelling with
the FEM is still a challenging subject, because it usually requires both
fine crack tip meshes and sophisticated remeshing techniques during
crack propagation. In addition, when the FEM is employed to study the
dynamic soil-structure interaction problem, a finite computational
domain should be truncated from the semi-infinite space. If the fixed
boundary conditions without special treatment are adopted, the out-
going waves are reflected at the truncated boundaries of the finite
element mesh. Another straightforward application of the FEM is the
modelling of an unbounded domain using the extended mesh whose
outer boundary lies outside the domain of influence. However, the
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extended mesh requires an extremely large computational region and a
tremendous amount of computational cost to analyze the dynamic
responses of the soil-structure interaction system. Many global and
local procedures, such as the boundary element method (BEM) [2,3],
the viscous boundary [4], the viscous-spring boundary [5,6], infinite
elements [7], the transmitting boundary [8], etc, have been developed
to take into account of the radiation condition of the unbounded
domain. Their advantages and disadvantages are referred in a number
of review literatures [9—11].

The scaled boundary finite element method (SBFEM), devel-
oped by Wolf and Song in 1990s [12,13], is a semi-analytical
technique which excels in modelling time-dependent problems in
unbounded domains and in modelling bounded domains with
singularities. In the SBFEM, the governing partial differential
equations (PDEs) of elastodynamics in the circumferential direc-
tion are transformed to the ordinary differential equations (ODEs),
with the radial coordinate as the independent variable, which can
be solved analytically and lead to the following distinguishing
features. First of all, for an unbounded domain, the radial coordi-
nate points from the boundary towards infinity. The boundary
conditions at infinity (radiation condition) are satisfied exactly in
the analytical solution. Secondly, for a bounded domain, the radial
coordinate points from the boundary towards the interior. The
accurate stress intensity factors (SIFs) can be obtained directly
from the analytical stress fields based on the definition.
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In the aspect of modelling the unbounded medium, a rigorous
solution procedure, which is based on the solution of the acceleration
unit-impulse response matrix of the unbounded domain, was com-
monly utilized in the references [14—17]. It is global in time and space
and thus computationally expensive [18,19]. Alternative procedures,
which aim at avoiding the convolution integral altogether by develop-
ing the scaled boundary finite element method directly in the time
domain, have been proposed recently. A Padé approximation for the
dynamic stiffness matrix of an unbounded medium in the frequency
domain has been proposed by Song and Bazyar [20], which has a large
range and high rate of convergence. A high-order local transmitting
boundary based on a continued-fraction solution of the dynamic
stiffness matrix at high-frequency limit w—c has been developed by
Bazyar and Song [21]. But it may fail for systems with a larger number
of degrees of freedom (DOFs) and for approximations of higher order.
A doubly-asymptotic continued-fraction solution of the dynamic stiff-
ness has been proposed [22], in which only the scalar case has been
addressed so far. An improved continued-fraction solution for the
dynamic stiffness matrix of the unbounded domain has been presented
by Birk et al. [23], which yields numerically more robust results and is
suitable for large-scale systems and arbitrarily high orders of expan-
sion. A high-order time-domain approach for wave propagation in
bounded and unbounded domains has been proposed [24], in which
the high-order time-domain formulation representing the bounded
domain is coupled to the improved high-order transmitting boundary
for unbounded domains proposed in [23]. A FE-SBFEM coupled
approach, which is based on the continued fraction solution of dynamic
stiffness in [21], has been employed to solve the semi unbounded
inclined soil field with bedrock in time domain [25].

In the aspect of fracture analysis, the SBFEM has been well
demonstrated by calculating static stress intensity factors (SIFs) for
isotropic materials [26], anisotropic materials [27], functionally graded
materials [28] and piezoelectric composites [29,30]. After coupling
with several simple remeshing methods, such as polygon elements in
[31-33], quadtree meshes in [34] and a non-matching method in [35],
the SBFEM has been successfully applied to static crack propagation
problems. According to these attributes, the SBFEM has also been
exploited in coupling with FEM [36], BEM [37] or XFEM [38-40] for
calculating parameters in fracture mechanics and crack propagation.
For dynamic fracture mechanics analyses, a super-element, repre-
sented by the static stiffness matrix and mass matrix, was proposed
by Song [41]. The dynamic crack propagation has been modeled based
on this super-element method with polygon [42] or quadtree meshes
[43]. Although the advantages of the SBFEM in representing stress
singularities are retained, the size of the super-element is limited by the
highest frequency component of interest, which may lead to consider-
able computational cost in each time step. Instead of this super-
element, a frequency domain method to calculate dynamic SIFs for
homogenous materials and bimaterial interface problems are presented
by Yang et al. [44] and Yang and Deeks [45]. However, it is not easily
amendable to time domain crack propagation. Recently, the dynamic
analysis of isotropic and anisotropic materials has been performed
efficiently with a novel solution procedure, known as the continued
fraction algorithm, in both frequency and time domain [46,47], in
which the high frequency response is modeled by the high-order terms
[48]. However, the method may fail for systems with a large number of
DOFs and for approximations of high-order expansions [24]. To the
best of our knowledge, there are few studies on the dynamic fracture
analysis for the soil-structure interaction system at present.

This paper aims to combine the two distinguishing features of the
SBFEM and solve the crack problems in the soil-structure interaction
system in the time domain. The bounded domain is modeled by the
polygon elements. The unbounded domain is represented by a high-
order transmitting boundary, which is based on the improved con-
tinued fraction solution for the dynamic stiffness matrix. The rest of the
paper is outlined as follows. In Section 2, some basic equations about
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Fig. 1. The basic concept of the SBFEM.

the polygon scaled boundary finite element method are briefly de-
scribed. In Section 3, a high-order approach for the dynamic soil-
structure interaction system by using the SBFEM is presented. In
Section 4, a numerical procedure to extract the dynamic stress intensity
factors and T-stress with the definition of the generalized stress
intensity factors is addressed. In Section 5, the application of the
proposed coupled method to two numerical examples is demonstrated.
In Section 6, some major conclusions from this contribution are
summarized.

2. Summary of the polygon scaled boundary finite element
method

The basic concepts and equations of the scaled boundary finite
element method are introduced in detail in the literature [12,13]. For
completeness, only some main equations are summarized in this
section.

As shown in Fig. 1, the SBFEM is described in a local coordinate
system, 1 on the boundary and the radial coordinate & The whole
domain can be divided into several subdomains (also named super-
elements [49]) in a manner similar to the FEM and each subdomain is
defined by scaling a boundary S relative to its scaling center O. The
normalized radial coordinate & is a scaling factor, defined as 1 at the
boundary S and 0 at the scaling center O. For a bounded subdomain,
0 < £ < 1; whereas, for an unbounded subdomain, 1 < & < + 0.

The displacements at a point (&, ) are interpolated as

{u(€. m} = INmHu@©)} = INDUL, Ny@pll], ... J{u(©)} (€))

where [N(n)] are the shape functions in the circumferential directions.
{u(é)} are the displacements function along the radial lines and are
analytical with respect to & only.

The strains are derived as

(e, )} = [B'Op) (@) + %[Bz(n)]{u(é)}

2
where [B'(7)] and [B%(7)] represent the strain-nodal displacement
relationship.

The stresses are derived as
{o(&. m} = [DHe, m} 3)

where [D] is the elastic matrix. After expressing the governing
differential equations in the scaled boundary coordinates, Galerkin’s
weighted residual method or the virtual work formulation [50] is
applied in the circumferential directions. In the frequency domain, the
two-dimensional fundamental equation of the scaled boundary finite
element in displacement {u(¢)} is shown to be
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