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A B S T R A C T

The three-dimensional potential flow problems are solved by a boundary integral equation in this article. The
boundary integral equation is regularized by a subtracting and adding-back technique in global elements. This
technique utilizes several identities to eliminate the singularities or near singularities of surface integrals. In test
cases, the convergence speed of this method for a smooth body is of the order N−3 in one direction no matter
how high-order quadrature is applied. For nearly singular integrals, several extremely oblate spheroids are
tested to verify this method. These results illustrate that this method can effectively improve the nearly singular
deficit when it exists. For the non-smooth bodies, the present method is applied to solve the mixed boundary
value problems inside two kinds of vessels, which are sloshing motions. At last, some tests are compared
between the boundary element methods (local elements) and the present method (global elements).

1. Introduction

The boundary integral equation methods (BIEM) have been widely
studied in potential theory, elasticity and acoustics since Jaswon [1],
Symm [2], and Hess and Smith [3]. It is classified as a “boundary”
method, meaning the computational dimensions can be reduced by
one. With the advance of computer technology, the boundary element
method (BEM), which emerged in the 1970s, has become the most
famous numerical method for solving boundary integral equations. Its
early history can be found in the article [4]. Although the boundary
element method is popular among scientists and engineers owing to its
advantage of saving computer memory, it is somehow tedious to
compute the singular integrals during the numerical process. Many
textbooks [5–7] have discussed the solving methods for those singular
integrals, including polar coordinate transformation, direct limit
approach, and analytic regularization. In the traditional BEM, the
boundary is discretized into small local elements to approximate its
geometry and physical properties. For the sake of using shape func-
tions, it almost inherently generates errors. In order to reduce the
numerical error, either the number of elements or the order of shape
functions needs to be increased. However, an arbitrary-order shape
function is not ready in BEM and a high-order element leads to
complex calculations. The quadratic element is almost the highest-
order element in practice. Linear and constant elements are much
more popular.

In contrast to the traditional BEM, which handles singularities after
discretization, the regularization (or called as de-singularized) method
deals with the singularities before discretization. Usually, it is more
convenient to use regularization methods, especially when dealing with
three-dimension problems. To overcome the singular integrals in
computation, several techniques were developed. Webster [8] moved
the singular point away from the real boundary to avoid the singular
integrals. Later, some studies [9,10] found the distance between true
boundary and the auxiliary boundary needed to be chosen carefully
since it could be sensitive to the solution. Therefore the optimum
distance value was determined by a function correlated with the mesh
size [11,12]. Such a de-singularized technique is also called as the null-
field boundary integral equation method [13–15] for direct method,
and named as the method of fundamental solutions (MFS) [16] for the
indirect method. On the other hand, instead of moving singular nodes,
the “subtracting and adding back” technique smoothens the singula-
rities with some mathematical identities. This approach is different
from the de-singularized integral equations in Refs. [8–12]. The
quadrature formula can be directly applied on the real boundary, and
those quadrature points are taken as collocation points. Therefore, the
shape function is unnecessary. If the exact shape of the body is known,
the discretization errors in geometry can be completely discarded. The
concept of subtracting and adding-back technique can be traced back
earlier to Landweber and his co-workers [17,18]. Afterward, Guiggiani
developed similar technique to compute the Cauchy principal value
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integrals for elastic problems [19–21]. For two-dimensional cases,
Saranen [22] regularized the logarithmic kernel integral equations and
theoretically proved its convergence speed for a smooth body with a
trapezoidal rule. Afterward the accuracies of both plane exterior and
interior problems were discussed in Refs. [23–25]. For three- dimen-
sional cases, the source integral was regularized by utilizing the
electrostatic capacitance theorem (also known as equipotential meth-
od) and the doublet integral was regularized by the Gauss flux theorem
for a closed body [17]. Although the equipotential method is simple, its
iteration process needs excessive computing time and sometimes leads
to convergence problem when dealing with sharp-shaped boundary.
Recently, Hwang [26] gave different formulations to remove the
singularities in both source and doublet integrals for an arbitrary
element. Meanwhile Zhang et al. [27] also proposed the similar idea to
acquire the regularized boundary integral equation, and established the
coefficient matrices directly without numerical integration in the same
way.

In this article two major objects are focused; one is the problems of
flat oblate bodies, and the other is the mixed boundary value problems
for non-smooth bodies. First of all, when considering oblate or thin
bodies, e.g. airfoils [28], thin-structures [29,30], thin-wall [31] or
cracks on plates [32], the nearly singular effect is the major source of
numerical errors. Such an integral is more difficult to handle than the
singular one. It is not a real singularity in the equation, but it is referred
to the numerical drawback from its geometry deficit. When a dipole or
source is located near a surface, the value of integrand varies drastically
due to the short distance between the load point and its integral region.
If the quadrature nodes are not dense enough, comparing with the
shortest distance between the load point and the integral surface, the
numerical integration will not produce an accurate result. In order to
avoid such a situation, one may deploy more quadrature points on the
body surface or execute another procedure to smoothen the near
singularity. Many researchers have presented various treatments, such
as analytical integral method [33], semi-analytical method [34,35],
subdivision method [36,37], coordinate transformation method [38]
and nonlinear transformations [39–45] to improve the accuracy of
nearly singular integrals. As a result, the nonlinear transformations
became more popular owing to fewer limitations than other methods.
Including the rational transformation [46], the exponential transfor-
mation [47], and the sinh transformation [48–51], they all handle the
near singularities before applying the numerical quadrature. On the
basis of the subtracting and adding back concept [26], Hwang derived
auxiliary functions by use of Stokes’ theorem to alleviate the near
singularity for both doublet and source integrals in three- dimensional
problems [26,28]. Although they can be applied to all kinds of
boundary with any quadrature formula, the accuracy of this method
has not been well understood. The present study applies these formulas
to solve the potential flows of oblate bodies and analyzes the efficiency
and accuracy of this method. Those solutions are compared with the
equipotential method [17] and the traditional BEM. Secondly, this
article also investigates the mixed boundary value problems for non-
smooth bodies, for example, the sloshing behavior inside a liquid
container. Sloshing phenomenon is very important in design of water,
chemicals or petroleum tanks. Many useful numerical schemes, such as
finite difference method (FDM) [52], finite element method (FEM)
[53], volume of fluid (VOF) method [54] and boundary element
method (BEM) [55] have been developed for solving such a problem.
The physical quantities, such as the velocity of fluid, are calculated at
every time step to catch the free-surface profile. The regularized
boundary integral method can solve such problems with superior
efficiency since only those nodes on the boundary are actually
computed. Two kinds of vessels are presented in this article. Detailed
discussions are made in the following sections.

2. Three-dimensional boundary integral formulae

The following boundary integral equation is established for solving
Laplace’s equation. The fundamental solution of Laplace’s equation in
three dimensions can be expressed as:

G
πr p q

= −1
4 ( , )

,
(1)

where r p q( , ) is the distance between the load point p and the field
point q which locates on the boundary S. Assuming the velocity
potential ϕ satisfies Laplace’s equation; insert Green’s function and
the velocity potential into Green's second identity. The potential ϕ can
be expressed in an integral form
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where n denotes the unit outward normal vector on the boundary, and
∫c p dS( )=

S
G
n

∂
∂ is a coefficient depending on the location of point p.

Physically, this coefficient can be interpreted as the flux on the
boundary due to a unit source at p. Therefore c p( ) is 1 when p is
inside the domain, 1/2 when p is on the smooth part of boundary, and
0 when p is outside the domain.

3. Regularized boundary integral methods

The integrals in Eq. (2) involve singularities in both surface
integrals when p and q coincide. Fortunately, the normal derivative
of source function is quite easy to eliminate. The alternative form of Eq.
(2) can be rearranged as follows
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∂

=0.
S S (3)

The integrand of the first integral in Eq. (3) becomes bounded and
the value can be treated as zero in an average sense when p and q
coincide on a smooth region. However, the other singularity in source
integral needs much more work. To remove the singularity in the
source integral, a procedure was proposed by Landweber and Macagno
[17]. They apply a source distribution on the boundary to form an
equipotential surface on it. The source distribution satisfies a homo-
geneous integral equation [1].
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where e p( ) is the function of source distribution, and np is the unit
outward normal vector of point p. Since the numerical values of kernel
function in Eq. (4) can be directly obtained from the dipole term in Eq.
(3), an economical way to solve this distribution is to use an iterative
process, such as:
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The equipotential value ϕe can be evaluated in the following form

∫ϕ e q GdS=− ( ) ,e
S (6)

and this value is a constant including the boundary and its inside.
Then, the subtracting and adding-back technique is applied to remove
the source singularity in the last integral of Eq. (2) such as:
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4. Boundary integrals on partial surface of body

In the last section, the surface integral deals with the whole body
surface, but these formulas may not always work. For example, when
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