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A B S T R A C T

Prediction of penetration depth in metal laser drilling is done through a simple meshfree numerical model. 2D
axisymmetric simplified model of transient metal laser drilling is proposed for continuous laser beam of
Gaussian distribution with strong form of Radial Point Interpolation Method (RPIM) used for approximating
the temperature field. The commonly used Multi-Quadrics (MQ) and Exponential (EXP) Radial Basis Functions
(RBFs) are tested and compared with each other. The model logic is constructed in MATLAB code, while the
results are compared with published numerical and experimental work. The simulation results give good
agreement with the previous numerical and experimental work, showing the model reliability in predicting the
penetration depth in such a physically complex process.

1. Introduction

Mesh-based numerical methods have been extensively used in both
fields of computational solid mechanics (CSM) and computational fluid
mechanics (CFD). The most widely used mesh-based methods are
Finite Volume Method (FVM), Finite Difference Method (FDM) and
Finite Element Method (FEM). They were successfully applied in both
areas of fluid dynamics and solid mechanics. Despite the heavy and
consistent usage of such methods, their mesh-based nature of fixed
topological connectivity limits their potential in handling problems of
high/severe deformation, crack propagation or free surface without
continuous re-meshing and heavy computational load, yet the result
may not be reliable.

Consequently, meshfree methods were introduced to compensate
the deficiency in grid/mesh-based methods in addressing such pro-
blems. Meshfree methods basically rely on discretizing the computa-
tional domain of interest into a finite number of particles with physical
meaning and properties such as pressure, temperature, velocity, mass,
etc. There is no fixed geometrical connectivity between the particles as
in the case of nodes in mesh-based methods. The solution for the field
variable of interest can be approximated locally or globally based on the
meshfree method used. Development of meshfree methods has been

rapidly increasing with several introduced methods such as Smoothed
Particle Hydrodynamics (SPH), Element-Free Galerkin (EFG), repro-
ducing kernel particle method (RKPM), Moving Least Square (MLS),
Radial Basis Function (RBF) methods, Meshless Local Petrov-Galerkin
(MLPG) [1–5].

Due to their dimensionality-independence, easy implementation
and integration-free properties, RBF collocation methods have proved
to be a reliable tool in solving partial differential equations (PDEs),
multi-variate scattered data processing, machine learning and neural
networks [6,7]. Their applications in solving PDEs have been widely
reported in fields of solid mechanics and fluid dynamics [8–15]. On the
other hand, due to the solution accuracy and convergence sensitivity to
the shape parameters in RBFs, attention and effort have been given to
evaluate the optimal shape parameters [16–19].

In order to fulfill the strict industry requirements imposed on the
final product size, quality, material and operating conditions, Laser
Beam Machining (LBM) has been an indispensable industry process
[20–22]. Therefore, this leads to the pursuit of developing numerical
and analytical models such that a better understanding of the physical
process, in addition to the parameters effect, can be given without the
need of extensive experimental work [23–28]. Meanwhile analysis and
prediction using Taguchi Artificial Neural Network and Fuzzy logic
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have also been undertaken [29–31].
As previously mentioned, mesh-based methods have limitations in

handling such severe deformation problems without continuous re-
meshing and heavy computational load. Consequently, for metal laser
processing, meshfree methods started to be introduced in the numer-
ical simulation like the work in [32] using SPH (as cited in [26]), while
a fully developed SPH platform (SPHysics) was used in [26] to simulate
the metal laser drilling process considering molten pool hydrody-
namics, penetration depth and expelled particles kinetics. In [33,34],
the metal laser drilling process was simulated using Isoparametric
Finite Point Method (IFPM) through an iterative scheme to find the
boundary shape satisfying the energy balance.

In the present work, metal removal in laser drilling is simulated in
terms of penetration depth using the Radial Point Interpolation
Method (RPIM) with shape functions calculated by two popular
different RBFs: Multi-Quadrics (MQ) and Gaussian/Expoential
(EXP). Direct Collocation Method (DCM) is used to discretize the
governing equation and boundary conditions. Employment of RPIM
and DCM boasts a big advantage of computation efficiency in discretiz-
ing the governing and boundary equations in addition to assembling
the global stiffness matrix in a straightforward manner. In [33,34], the
drilling simulation of full-depth penetration was not addressed, how-
ever, the present work will simulate the full-depth metal laser drilling
process through a simple MATLAB model employing RPIM. Results
validation will be done against the numerical and experimental work in
[26] to verify the present model accuracy.

2. Formulation of metal laser drilling by RPIM

2.1. Mechanism of metal laser drilling

Metal laser drilling is numerically simulated by RPIM, and Fig. 1
shows the conventional metal laser drilling mechanism. In such a
process, the metal is rapidly heated by the laser beam until reaching the
melting temperature, while pressurized assist gas expels the molten
metal away from he processed work-piece. Moreover, the assist gas
protects the metal from the surrounding in addition to reducing the
dross and recast.

2.2. Assumptions of numerical model

During model construction, the following assumptions are consid-
ered:

1. Laser beam is continuous of Gaussian power distribution and
vertically downward.

2. The radius of laser beam is constant and has value of the beam waist.
3. Laser irradiation is considered to be a surface heat flux not

volumetric heat source.

4. The processed metal is isotropic with thermos-physical properties
independent of temperature.

5. The molten metal does not show hydrodynamic behavior and is
removed upon reaching the melting temperature.

6. Removed metal does not absorb the laser energy and is transparent.
7. Heat convection coefficient has single value for both convection and

radiation losses.

2.3. Mathematical formulation of laser drilling

According to the previous assumptions, the governing equation is
the conventional transient heat conduction equation subjected to
natural and Robin boundary conditions. For uniform Gaussian dis-
tribution of laser intensity, 2D axisymmetric model in cylindrical
coordinates is considered. Following the mathematical formulation in
[35,36], while considering the laser irradiation to be a surface heat flux
not a volumetric heat source, the transient governing equation of heat
conduction for field particles is given by
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Nomenclature

Cp Specific heat
h Support domain radius
ha Coefficient of convective heat transfer
k Coefficient of thermal conductivity
lr,lz Lengths of specimen in radial and axial directions,

respectively
nl Unit normal vector outward laser-irradiated surface
nr,nz Direction cosines of the normal vector outward the laser-

irradiated surface
N Total number of particles in the whole domain
Pl Laser power
r z, Spatial coordinates in radial and axial directions, respectively

rb Laser beam radius at the focal point
t Laser processing time
T Particle temperature
Ta Ambient temperature
Tm Metal melting temperature
αl Laser absorptivity
Γa Convective boundary
Γl Laser-irradiated boundary
Δ Nodal spacing

tΔ Simulation time step
λ Thermal diffusivity
ρ Density
Ω Whole domain

Fig. 1. Fusion Laser Drilling Mechanism.
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