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A B S T R A C T

We present the Implicit Potential (IPOT) numerical scheme developed in the framework of meshless point
collocation. The proposed scheme is used for the numerical solution of the steady state, incompressible Navier-
Stokes (N-S) equations in their primitive variable (u-v-w-p) formulation. The governing equations are solved in
their strong form using either a collocated or a semi-staggered type meshless nodal configuration. The unknown
field functions and derivatives are calculated using the Modified Moving Least Squares (MMLS) interpolation
method. Both velocity-correction and pressure-correction methods applied ensure the incompressibility
constraint and mass conservation. The proposed meshless point collocation (MPC) scheme has the following
characteristics: (i) it can be applied, in a straightforward manner to: steady, unsteady, internal and external fluid
flows in 2D and 3D, (ii) it equally applies to regular an irregular geometries, (iii) a distribution of points is
sufficient, no numerical integration in space nor any mesh structure are required, (iv) there is no need for
pressure boundary conditions since no pressure constitutive equation is solved, (v) it is quite simple and
accurate, (vi) results can be obtained using collocated or semi-staggered nodal distributions, (vii) there is no
need to compute the velocity potential nor the unit normal vectors and (viii) there is no need for a curvilinear
system of coordinates. Simulations of fluid flow in 2D and 3D for regular and irregular geometries indicate the
validity of the proposed methodology.

1. Introduction

One of the problems arising in incompressible flow is the explicit
treatment of pressure in equations of motion. Moreover, solving
numerically the Navier-Stokes (N-S) equations is a challenging task
for a number of reasons. First, and most important, is the inherent
nonlinear nature of the partial differential equations. For high velocity
or low viscosity the governing equations can produce highly unstable
flows (formation of eddies). Second, is the imposition of the incom-
pressibility constraint, with the central question to be answered being
the calculation of pressure boundary conditions [1], considering that
the governing equations do not provide any boundary conditions for
the pressure. Any algorithm developed must ensure a divergence-free
flow field at any given time during the calculation.

A significant number of techniques have been developed aiming to
deal with the incompressibility constraint [2]. All were successfully
incorporated into the traditional mesh-based methods, such as Finite
Difference Method (FDM), Finite Element Method (FEM) and Finite
Volume Method (FVM). One of the first methods developed using the
FDM was the MAC (Marker-and-Cell) scheme, introduced by Harlow
and Welch [3]. The MAC scheme is a direct discretization of the (N-S)
equations in their primitive variables formulation using second order
finite differences on a staggered grid. The convection and viscous terms
are solved using explicit time integration, while the pressure term using
implicit time integration. Additionally, there is a decoupling of
computing the velocity and pressure fields, with the incompressibility
constraint being solved on the discretized momentum equation, which
results in a discrete Poisson equation for the pressure. In the late 60s

http://dx.doi.org/10.1016/j.enganabound.2017.01.009
Received 14 April 2016; Received in revised form 11 December 2016; Accepted 24 January 2017

⁎ Corresponding author.

Engineering Analysis with Boundary Elements 77 (2017) 97–111

0955-7997/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/09557997
http://www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2017.01.009
http://dx.doi.org/10.1016/j.enganabound.2017.01.009
http://dx.doi.org/10.1016/j.enganabound.2017.01.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2017.01.009&domain=pdf


Chorin [4] introduced the projection method that allows simplified
treatment of the viscous term. In the context of projection methods an
intermediate velocity is computed first and then projected onto the
space of incompressible vector fields by solving a Poisson-type equation
for pressure. The first successful application of FEM to flow problems
might be the work of de Vries and Norrie [5], where the Galerkin FEM
was applied to incompressible flow with low and moderate Reynolds
number. Despite its success, in the cases of high Reynolds numbers the
nonlinear convective terms induce numerical oscillations.
Consequently, the standard Galerkin FEM, known to be unstable in
convection dominated regimes, was modified and new sophisticated
methods emerged, such as the streamline upwind Petrov-Galerkin
(SUPG) method, the sub-grid scale method, the finite increment
calculus (FIC) method, the Taylor-Galerkin (TG) method and the
characteristic-based split (CBS) method [6,7]. In the context of Finite
Volume methods frequently used methodologies belong to the Semi-
Implicit Method for Pressure Linked Equations (SIMPLE) family [8,9].
Alternative approaches are the artificial compressibility technique [10]
and the Continuity Pressure Vorticity (CVP) method [11,12]. Therein,
the velocity field is corrected according to a well-known vector identity
and, on the basis of this correction, the pressure field is subsequently
updated. The solution is obtained using the Helmholtz decomposition
of the velocity vector and a modified Bernoulli's law for the coupling of
the velocity-pressure for the simulation of external flows. In [13] a
novel auxiliary potential velocity scheme for incompressible flows was
presented, while in [14] the implicit potential method was applied
utilizing an implicit potential velocity method for the mass conserva-
tion and employing a modified form of Bernoulli's law for the coupling
of the velocity-pressure corrections. When a potential velocity is
introduced, where the velocity correction is applied in order to fulfil
continuity equation, an additional equation for the potential of the
velocity is introduced. The boundary conditions (BCs) for the velocity-
correction potential function require the computation of the unit
normal vectors. It is usually a difficult task, especially in the case of
irregular geometries. In the proposed scheme there is no need to
compute a potential velocity and unit normal vectors.

Both FDM and FVM methods widely use a semi-staggered or a fully
staggered grid, applied in flow problems with uniform spatial domain
or with some kind of symmetry. Although the applicability of the
method in irregular geometries is feasible, the computational cost may
increase drastically. On the other hand, mesh-based methods, despite
their success, have some serious drawbacks related to the mesh
generation. Mesh generation is still a difficult task, especially for 3D
geometries, being the bottleneck of the entire simulation procedure.
The main drawback is the refinement process. Eventually, meshless
methods have recently emerged as a possible alternative to overcome
the problems of mesh generation and facilitate local refinement of the
approximation scheme.

In the context of Meshless methods (MM) the spatial domain is
represented by a set of nodes, uniformly or randomly distributed along
the interior and on the boundaries, without any inter-connectivity. A
practical overview of meshless methods based on global weak forms
was given in [15]. Numerous MMs schemes were developed in both
Eulerian and Lagrangian frameworks, such as the Meshless Local
Petrov-Galerkin (MLPG) [16–21], Local Boundary Integral Equation
(LBIE) [22,23], Meshless Point Collocation (MPC) [24–28], Element
Free Galerkin (EFG) [29,30], Smoothed Particle Hydrodynamics (SPH)
[31–33] and Finite Point method [34–36], applied on the numerical
solution of (N-S) equations. Flow equations can be solved in their
primitive variables formulation or in their velocity-vorticity and stream
function-vorticity formulation. In most of these methods pressure has
been computed explicitly or as a final outcome, given the boundary
conditions for pressure.

The present study deals with the reformulation of the implicit
potential (IPOT) methodology [14] and its application in the context of
meshless methods. The proposed scheme solves numerically the steady

state, laminar and incompressible (N-S) equations, in their primitive
variables formulation using a collocated or semi-staggered nodal
arrangement. The novelty relies on the introduction of a complemen-
tary pressure (pressure correction) through the introduction of a
complementary velocity, which ensures mass conservation. Moreover,
we assume that the complementary velocity and pressure correspond to
a complementary flow. Consequently, an “appropriate” momentum
equation appears, which can be described as a modified expression of
Bernoulli's law for the complementary flow and, after some algebra, the
complementary pressure is obtained. In fact, both pressures, comple-
mentary and physical, are calculated through an algebraic relation
without solving any partial differential equation. Eventually, the
number of equations solved decreases. To the authors’ knowledge, this
is the first attempt to apply the proposed IPOT methodology using
meshless schemes in general and, specifically, the MMLS method, to
approximate the flow variables. The proposed IPOT meshless point
collocation (MPC) scheme has the following characteristics: (i) it can be
applied, in a straightforward manner, to steady, unsteady, internal and
external fluid flows in 2D and 3D, (ii) it is equally performant for
regular an irregular geometries, (iii) a distribution of points is
sufficient, no numerical integration in space nor any mesh structure
is required, (iv) there is no need for pressure boundary conditions since
no pressure constitutive equation is solved, (v) it is quite simple and
accurate, (vi) results can be obtained using collocated or semi-
staggered nodal distributions, (vii) there is no need neither for the
computation of the velocity potential nor the computation of the unit
normal vectors and (viii) there is no need for a curvilinear system of
coordinates.

The rest of the paper is organized as follows. In Section 2, the
governing equations along with the proposed IPOT numerical method
are presented, while the approximation method of the classical Moving
Least Squares (MLS) and the Modified MLS are briefly presented in
Section 3. Section 4 presents the verification benchmark flow problems
used along with the test cases used to demonstrate and highlight the
accuracy, robustness, and computational efficiency of the proposed
scheme. Finally, the conclusions are given in Section 5.

2. Governing equations and solution procedure

2.1. Governing equations

Navier-Stokes equations express conservation of linear momentum.
They are a set of nonlinear partial differential equations (PDEs) which,
in velocity-pressure formulation [2], can be written in non-dimensional
form as:● Momentum equation

u u u Fp
Re

( ∙∇) = −∇ + 1 ∇ + ,2
(1)

● Continuity equation

u∇∙ = 0. (2)

where u is the flow velocity vector, p is the pressure field, Re is the
Reynolds number and F corresponds to body force terms (herein we
assume F=0). All field variables are functions of space x, in a fixed
domain Ω surrounded by a closed boundary. The system of PDEs (1)-
(2) is closed with appropriate boundary conditions related to the
physical problem considered. Different types of BCs can be used,
namely Dirichlet, Neumann, Robin, mixed type etc. In the present
paper the applied boundary conditions are described in the numerical
examples examined.

2.2. Solution procedure with IPOT scheme

In the context of the strong form meshless point collocation
method, an iterative scheme has been developed for the numerical
solution of the (N-S) equations in their primitive variables (velocity-
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