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A B S T R A C T

The Regularized Meshless Method (RMM) is a meshless boundary method. Its source points and physical points
are overlapped. The substraction and adding-back technique is utilized to avoid the singularity of the
fundamental solution. It is simple and easy to be programmed. But the double layer potential should be
adopted in the desingularity technique. Here the single layer potential is employed to circumvent the
singularity. The substraction and adding-back technique is succeeded, but the careful selection of particular
solution for the null-fields boundary integral equation is chosen to derive the diagonal elements for the Laplace
Dirichlet problem. By this particular solution, the diagonal elements can be represented by the single layer
potential. Here it is extended to the exterior Helmholtz problem by relationships between Laplace and
Helmholtz singularities. The fictitious frequencies are avoided by the Burton-Miller type formula and Dual
Surface technique. The accuracy of these methods are shown by three typical examples.

1. Introduction

The Method of Fundamental Solutions (MFS) is a typical meshless
boundary collocation method. However the choice of source points is
arbitrary and without a particular rule. Many Boundary Meshless
Methods with source points coincident with physical points have been
proposed in the literature. These methods use different techniques to
avoid the singularity of fundamental solution. Boundary Node Method
(BNM) [1] adopts the interpolation procedure to circumvent the
singularity. And it was extended to 2-D interior Helmholtz problem
[2]. Boundary Points Method (BPM) [3] uses the ‘moving elements’ to
avoid the singularity. Boundary Particle Method (BPM) [4], Boundary
Knot Method (BKM) [5] employ an alternative non-singular kernel
function to circumvent the singularity. Boundary Distributed Source
(BDS) method [6], Improved Boundary Distributed Source (IBDS) [7],
Non-Singular Method of fundamental solution [8] remove the singula-
rities by distributed source over areas (for 2D) or volumes (for 3D)
covering the source points.

Regularized Meshless Method (RMM) which uses the desingular-
ization of subtracting and adding back technique was proposed by
Young et al. [9] for 2-D Laplace problem, and then applied to different
problems [10–13]. This method was later extended to 2-D [14] and 3-
D [15] exterior acoustic problem. In RMM the double layer potential
was adopted as the fundamental solution for the convenience of using
null-fields boundary integral equation to desingularize the fundamental
solution for Laplace equation. Then Helmholtz equation fundamental
solution is represented by its direct relation with Laplace equation. In
this paper the substraction and adding-back technique is succeeded,

but the careful selection of particular solution for the null-fields
boundary integral equation is chosen to derive the diagonal elements
for the Laplace Dirichlet problem. By this particular solution, the
diagonal elements can be represented by the single layer potential [16].
Here it is extended to Helmholtz problem.

This paper is also similar to the idea of Singular Boundary Method
[17,18] to get the magnitude of singular source, which also uses the
single layer potential as the fundamental solution. This method also
extended to 2-D interior [19] and exterior [20] acoustic problem. In the
SBM [17] or ISBM [18], the inverse interpolation technique (IIT) was
adopted to get the singular source magnitude for the Dirichlet problem.
They got the Neumann problem singular source magnitude by the
subtraction and adding-back technique in null-fields boundary integral
equation firstly, then integrated the solution to achieve the Dirichlet
problem singular source magnitude, the constant for the integration
was derived by the inverse interpolation from the domain points. In
this paper the Dirichlet problem singular source magnitude is directly
derived from the null-field integral equation by the subtraction and
adding-back technique using the single layer potential, without the
needing of inverse interpolation. Recently the explicit empirical
formula for the diagonal elements has been proposed [21]. It will be
compared in numerical example 5.1.

In the following sections, the theory of the Single Layer Regularized
Meshless Method (SRMM) for exterior acoustic problem is introduced.
The Burton-Miller technique and Dual Surface technique are adopted
to avoid the non-uniqueness. Then three typical examples show the
validation of these methods.
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2. Formulation of single layer regularized meshless method

From the boundary value problem Helmholtz equation in 3D
domain Ω exterior to a closely boundary Γ

p x k p x x Ω▽ ( ) + ( ) = 0, ∈2 2 (1)

subjected to the following boundary conditions

p x p x x Γ Dirichlet boundary condition( ) = ( ), ∈ ( )D (2)

n
q x p x q x x Γ Neumann boundary condition( ) = ∂

∂
( ) = ( ), ∈ ( )N (3)

where Ω is a bounded domain with boundary Γ Γ Γ= +D N , n presents
the outward normal, k ω c= / is the wavenumber, ω is the angular
frequency, c is the wave speed in the medium Ω, p is the complex
valued amplitude of radiated and/or scattered wave.
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where the subscripts T, R and I denote the total, radiation and
incidence wave respectively.

By the single layer fundamental solutions, the approximate solu-
tions p(x) and q(x) of exterior acoustic problem can be expressed as
follows:
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where xi is the i-th physical point, sj is the j-th source point located on
the physical boundary, αj the j-th unknown intensity of the distributed
source at sj, N the numbers of source points and
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is the fundamental solution and the physical normal derivative of
three-dimensional Helmholtz equation, r x s= ∥ − ∥i j , 〈, 〉 denotes the
inner product. If the collocation points and source points coincide, the
singularities are encountered. However, unlike the potential problem,
the source intensity factors can't be calculated directly from the
Helmholtz fundamental solutions by analytical-numerical technique.
Fortunately, the Helmholtz fundamental solutions have a similar order
of singularities as the related Laplace fundamental solutions. Hence the
corresponding relationships can be represented by the following
asymptotic expressions [22]
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where G x s( , )L i j is the fundamental solutions of Laplace equation,
G x s r( , ) = 1/L i j in 3D problems.

The derivation of G x s( , )L i i and
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are shown in Appendix A.
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have been derived in [23].

As well already known that Eqs. (5), (6) encounters the non-
uniqueness problems when the wave number k is the eigen-frequency
of the corresponding interior problem. Many techniques to avoid the
non-uniqueness exist in the literature. These techniques can be
classified into two categories. One is to add additional restriction to
get the unique solution, such as the CHIEF method [24] to add more
points in the domain, which also satisfy the Helmholtz equation; The
other one is to add the damping in the original equation, and shift the
fictitious eigen-frequencies to the complex plane [25]. Many methods
can be considered as this category. Burton-Miller Method [26] adds the
imaginary double layer integral equation to the original one. Dual-
surface method was original utilized in the electromagnetic scattering
problem [27], and then extended to the acoustic scattering problem
[28], which adapts the imaginary surface to shift the fictitious
frequencies. Here we adapt these two damping methods with the
regularized meshless method to overcome the non-uniqueness.

3. Burton-miller type regularized meshless method

Directly from the Burton-Miller concept, we can construct Burton-
Miller type regularized meshless method.
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Where γ i k= /BM according to [25].

4. Dual-surface single-layer regularized meshless method

The basic idea is to generate a virtual second surface inside the
structure (Fig. 1) by shifting the original points sj along the element
normal to a “virtual” surface sj

DS using a distance δDS which depends
on the wavelength.

Fig. 1. Dual-surface model scheme.
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