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a b s t r a c t

This work presents a linear complementarity formulation for elastoplastic analysis of the gradient-de-
pendent plasticity including large deformation problems. The formulation is based on the meshfree
smoothed radial point interpolation method, where the parametric variational principle (PVP) is used in
the form of linear complementarity and the gradient-dependent plasticity is represented by the line-
arization of yield criterion. The yield stress is linearly evolved through equivalent plastic strain as well as
its Laplacian (namely second gradient). The global discretized system equations are transformed into a
standard linear complementarity problem (LCP), which can be solved readily using the Lemke method.
The proposed approach is capable of simulating material hardening/softening and strain localization. An
extensive numerical study is performed to validate the proposed method and to investigate the effects of
various parameters. The numerical results demonstrate that the proposed approach is accurate and
stable for the elastoplastic analysis of 2D solids with gradient-dependent plasticity on strain localization.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of strain localization is commonly observed in
many materials such as concrete [1], rock [2] and soil [3] in the
form of shear band, which is characterized by a deformation
concentration in a narrow band. Due to the complexity of the
problem, only a few simple cases may be solved analytically on the
basis of strain localization condition [1], Cosserat media [4], non-
local and gradient theories of plasticity [5,41] and damage [6]. For
the problems of complex boundaries, numerical methods are
needed because of the strong nonlinearity of the problem.

Many numerical schemes have been developed for solving
strain localization problems. To summarize briefly, these include:
1) Finite element method (FEM) using an element-enrichment
technique, with the strain localization condition identified by
means of a bifurcation analysis [7]; 2) FEM based on the con-
sideration of Cosserat continua [2,8,9]; 3) Methods based on non-
local plasticity theory, such as regularization of integral using FEM
[10], implicit gradient plasticity using FEM [11] or element-free
Galerkin method (EFG) [12], explicit gradient plasticity (also called
gradient-dependent plasticity) using FEM [13], boundary element

method (BEM) [14] and EFG [12]; 4) in the environment of
meshfree cohesive model/interface for shear band and cracking
[38–40]; and 5) Other methods [15–21,41].

It is generally recognized that the methods based on Cosserat
media and nonlocal theories of plasticity can provide a stable
prediction of the width of the shear band. These methods can
overcome the pathological phenomenon of mesh sensitivity for
softening media because of the inclusion of an internal length
scale parameter. However, methods based on Cosserat media can
only be suited for problems which are dominated by a shear fail-
ure. In contrast, methods based on nonlocal theory may be applied
to problems dominated by both shear and tension failure. More-
over, the gradient-dependent plasticity underlying these methods
is easy to be implemented, and for this reason, these methods
have attracted considerable attention in the research community.
In this paper, the gradient-dependent plasticity is considered for
strain localization problems.

For problems of strain localization, mesh distortion often oc-
curs because of large deformation in a local zone or a shear band
in the finite element frame, so a mesh adaptive strategy is often
required to get rid of that problem. As an alternative, many
meshfree/meshless methods [12,22–29] have been developed in
recent years. Recently, a novel smoothed point interpolation
method (s-PIM) has been developed based on the newly devel-
oped G space theory and weakened weak formulation [30]. With
the help of the generalized gradient smoothing operation, S-PIM
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can effectively softened the overly-stiff stiffness and process a
number of good properties, including better stress results, higher
convergence rate and efficiency, immune from volumetric locking
and providing upper bound energy solutions [31]. In this work, we
further implement the node-based smoothed radial point inter-
polation method (NS-RPIM) for the elastoplastic analysis of 2D
solids with gradient-dependent plasticity. The NS-RPIM is a typical
model of S-PIM and was originally named as linearly conforming
radial point interpolation method [30,32–34]. The NS-RPIM has
the following particular advantages: 1) the shape function has the
Kronecker delta property; 2) the moment matrix used for con-
structing shape functions is always invertible for irregular nodes;
3) the linear field can be exactly reproduced using RPIM shape
functions augmented with linear polynomials; and 4) the method
can exactly pass the standard linear patch test, which is very
stable, accurate and efficient.

This paper is organized as follows. Section 2 provides an
overview of the weak form of the boundary value problem in two
dimensions and the gradient-dependent plasticity, as well as the
linearization of typically used constitutive models. Section 3 gives
the detailed formulations for elastoplastic analysis based on the
NS-RPIM, which includes shape function generation, the general-
ized gradient smoothing operation, strong form of the problem,
discrete governing equations and solution procedure. Three typical
numerical examples are studied in Section 4 to validate the pro-
posed approach and investigate the effect of associated para-
meters. Finally some conclusions are drawn in Section 5.

2. Fundamentals of 2D elastoplastic problem with gradient-
dependent plasticity

In this section, the weak form of boundary value equations for
elastoplastic analysis of 2D solid mechanics problems with gra-
dient-dependent plasticity is briefly introduced. Then the gra-
dient-dependent plasticity is reviewed, along with the lineariza-
tion in terms of the equivalent plastic strain and the plastic mul-
tiplier in the incremental form. Finally two commonly used yield
criteria and the corresponding flow rules, as well as their linear-
ized forms, are described.

2.1. Weak form of boundary value equations in the incremental form

The static equilibrium equation governing the solid defined in
domain Ω can be expressed as

( )σ Ω+ = ( )
∂
∂

∂
∂

B b 0, in 2.1
T

x y

where σ σ τσ = ⎡⎣ ⎤⎦, ,xx yy xy
T
is a vector of stress increment, b re-

presents the increment of body force density, and B is a partial
derivative operator.

At an arbitrary point the geometric continuity equation (strain-
displacement relation) can be written in the incremental form as

( )ε = ( )
∂
∂

∂
∂

B u, 2.2x y

where ε ε εε = ⎡⎣ ⎤⎦, ,xx yy xy
T

is the incremental strain vector, and

= ⎡⎣ ⎤⎦u vu ,
T

represents the vector of incremental displacement
components.

The elastoplastic constitutive equation with gradient-depen-
dent plasticity at a random point is given as

( ) ( )( )ε ε ε εσ σ˜ ¯̃ ∇ ¯̃ = ˜ − ¯̃ ∇ ¯̃ ≤ ( )f f f, , , 0 2.3
y p p p p2 2

( )( ) δ δε σ σ= ∂ ˜ ∂ = ¯ ( )f M/ 2.4
p g T f

( ) δσ ε ε ε= − = − ¯ ( )D D DM 2.5
p f

( )δ δ= ≥ ( )f 0 0 2.6

where the total stress σ̃ is composed of the initial stress σt at time t

and incremental stress σ, ( )σ̃f and ( )ε ε¯̃ ∇ ¯̃f ,p p2 are yield function

and yield strength at the stress space, respectively, ε ε ε¯̃ = ˜ ˜′ ′p p T p2
3

is

the equivalent plastic strain and ε̃ ′p is the deviatoric plastic strain,

( )( )σ σ¯ = ∂ ˜ ∂fM /f g T
represents the plastic flow direction and f g is

the plastic potential function, δ is the incremental plastic multi-
plier, and D is the elastic stiffness matrix.

The displacement boundary condition can be expressed as

Γ= ¯ ( )u u on 2.7u

where ū is a specified incremental displacement on boundary Γu.
The traction boundary condition is given as

( ) Γσ= = ¯ ( )n nT B T, on 2.8
T

x y
t

in which T̄ is a given incremental traction on boundary Γt , and
= ⎡⎣ ⎤⎦n nn ,x y is the outward normal vector of the traction boundary.

2.2. Gradient-dependent plasticity

In the gradient-dependent plasticity [5], the yield strength
depends not only on the hardening internal variable, but also on
its Laplacian. It may be generally given in the form of an equivalent
plastic strain ε̄̃ as an internal variable as

( )ε ε σ ε ε¯̃ ∇ ¯̃ = + ¯̃ + ∇ ¯̃ ( )f h g, 2.9
p p y p p2

0
2

where ( )ε ε ε= ∂ ¯̃ ∇ ¯̃ ∂ ¯̃h f , /p p p2 is the hardening/softening modulus

and ( ) ( )ε ε ε= ∂ ¯̃ ∇ ¯̃ ∂ ∇ ¯̃g f , /p p p2 2 represents the gradient influence

factor. For simplicity, constant h and g are adopted in this paper.
Considering that ε ε ε¯̃ = ¯ + ¯p

t
p p, the linearization form of the yield

strength in terms of the incremental plastic strain, ε̄p, can be ob-
tained as

( )ε ε σ ε ε¯ ∇ ¯ = + ¯ + ∇ ¯ ( )f h g, 2.10
p p

t
y p p2 2

in which σ σ ε ε= + ¯ + ∇ ¯h gt
y y

t
p

t
p

0
2 .

Furthermore, the incremental equivalent plastic strain may be
expressed using the incremental plastic multiplier as

ε α δ¯ = ( )2.11p
t

where α = M Mt
f2

3
ps , ( ) ( )ε ε ε ε= + + ¯⎡⎣ ⎤⎦c cM 1 1 /xx

p
yy
p

xy
p

t
pps

ps ps ,

( )α α= − −c 2 2 1.0 /3.0ps ps
2

ps , and αps is a coefficient with a value of

0 for plane stress problem and ( )ν ν−/ 1 for plane strain problem [5].
Then the Laplacian of the equivalent plastic strain can be ex-

pressed as

( )ε α δ α δ α δ∇ ¯ = ∇ + ∇ ∇ + ∇ ( )2 2.12p
t t

T
t

2 2 2

Substituting Eqs. (2.11) and (2.12) into (2.10), the linearized
yield strength in terms of the incremental plastic multiplier is
obtained as

( )ε ε σ δ δ δ¯̃ ∇ ¯̃ = + ¯ + ¯ ∇ + ¯ ∇ ( )f h gg, 2.13
p p

t
y2

1 2
2

where α α¯ = + ∇h h gt t
2 , α¯ = ∇gg 2 T

t1 , and α¯ =g gt2 . Note that by
comparing with Eq. (2.10), the above expression contains an
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