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a b s t r a c t

This paper first discusses the inherent instability of the interpolating moving least squares (IMLS)
method. In the original IMLS method, non-scaled polynomial bases are used. Theoretical and numerical
results indicate that the stability of the original IMLS method decreases as the separation distance de-
creases. Then, using shifted and scaled polynomial bases, a stabilized algorithm of the IMLS method is
proposed and analyzed. As an application, the stabilized IMLS method is finally introduced into the
meshless Galerkin boundary node method (GBNM) to produce a stabilized GBNM for potential problems
and Stokes problems. Numerical examples are given to demonstrate the stability and convergence of the
presented stabilized algorithms.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The moving least squares (MLS) method [1] is an approxima-
tion method to construct continuous functions from a set of point
values based on the computation of a weighted least squares ap-
proximation. Because the numerical approximation starts from
scattered nodes instead of elements, many meshless methods,
such as the meshless local Petrov–Galerkin method [2], the ele-
ment-free Galerkin (EFG) method [3,4], the boundary node
method (BNM) [5,6] and the symmetric Galerkin BNM [7,8] have
been developed using the MLS method. In these meshless meth-
ods, the MLS method is used to form shape functions. In recent
years, some MLS variants [9], such as the improved MLS [10,11],
the complex variable MLS [12] and the improved interpolating
MLS [13,14] have also been presented.

A disadvantage of the MLS method is that its shape function
lacks the property of Kronecker delta function. Thus, boundary
conditions in MLS-based meshless methods cannot be im-
plemented directly and easily. Many specific techniques have been
developed to implement boundary conditions [15]. To restore the
delta function property of the MLS method, Lancaster and Sal-
kauskas [1] further developed an interpolating moving least
squares (IMLS) method. The IMLS method is derived based on the
MLS method by using singular weight functions. In the IMLS
method, the shape function possesses the delta function property,

so implementing boundary conditions in IMLS-based meshless
methods is much easier than that in MLS-based meshless
methods.

By using the IMLS method to form meshless shape functions,
Kaljevic and Saigal [16] proposed an improved EFG. Besides, by
revising the formulae of the IMLS method, Ren et al. [17,18] ob-
tained new simpler formulae of the IMLS method, and then pro-
posed the interpolating boundary element-free method and the
interpolating EFG method. Moreover, Maisuradze et al. [19] used
the IMLS method to fit potential energy surfaces in one dimen-
sional chemical application, while Netuzhylov [20] used the
meshless collocation method based on the IMLS method to solve
boundary value problems. In these IMLS-based meshless methods,
boundary conditions are applied directly and easily, and the
number of unknown coefficients in the trial function of the IMLS
method is less than that in the trial function of the MLS method.
Therefore, these IMLS-based meshless methods have high com-
putational efficiency and precision [21–23].

As in the MLS approximation, continuous functions in the IMLS
method are constructed from a set of point values by computing a
weighted least squares approximation. Therefore, a drawback of
the IMLS method is that the moment matrix may become ill-
conditioned or singular. This makes that the coefficients in the
IMLS method and thus the IMLS shape functions are prone to
round-off errors. In fact, it has been noted from our numerical
experiments that if the separation distance is chosen to be too
small, or if the number of nodes is chosen to be too large, the
accuracy of the IMLS interpolation deteriorates. Besides, the
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associated interpolation error tends to grow with the decrease of
the separation distance, indicating a state of instability. The main
aim of this paper is to show and solve the inherent instability of
the IMLS method.

In Refs. [24,25], Mirzaei et al. developed a shifted and scaled
polynomial basis function to stabilize the MLS approximation. In
Ref. [24], the relationship between the condition numbers and the
determinants of the moment matrix in the MLS and those in the
stabilized MLS is presented and proved. Besides, in Ref. [25] it was
proved that, using the new basis, the minimum eigenvalue of the
corresponding moment matrix is bounded independent of the fill
distance, which means that the stabilized MLS approximation is
theoretically stable.

In this paper, the inherent instability of the IMLS method is
studied theoretically and verified numerically. By estimating the
determinant and the condition number of the moment matrix in
the IMLS method, we find that the stability of the IMLS method
deteriorates severely as the separation distance decreases. Since
the usually used polynomial basis functions in the IMLS method
are non-scaled, the analyzed results indicate that the inherent
instability of the IMLS method may be caused by using improper
polynomial bases. Then, with the aid of the shifted and scaled
polynomial basis function [24,25], a stabilized IMLS method is
developed. Theoretical analysis shows that both the determinant
and the condition number of the moment matrix in the stabilized
IMLS method are invariable with respect to the separation dis-
tance. Thus, the stabilized IMLS method prevents the instability
occurrence.

The Galerkin boundary node method (GBNM) [7,8] is a sym-
metric and boundary-only meshless method that combines a
variational form of boundary integral equations (BIEs) for gov-
erning partial differential equations with the MLS approximation
for generation of the trial and test functions. Compared with other
MLS-based boundary type meshless methods, the GBNM keeps the
symmetry and positive definiteness of the variational formulation
in the process of numerical implementation. Numerical applica-
tions and theoretical error estimates of the GBNM have been
presented for problems in potential theory [7,8], linear elasticity
[26] and fluid mechanics [27–29].

In this paper, the stabilized IMLS method is further introduced
into the GBNM to produce a stabilized GBNM. Details of numerical
implementation of the stabilized GBNM are presented for poten-
tial problems and Stokes problems. Unlike the GBNM, the stabi-
lized GBNM is a direct numerical method in which the basic un-
known quantity is the real solution of nodal variables. Besides,
boundary conditions in the stabilized GBNM can be applied di-
rectly and easily. Moreover, the stabilized GBNM is expected to
have better computational stability and convergence.

The rest of this paper is organized as follows. Section 2 gives
the IMLS method and its stability analysis. In Section 3, a stabilized
IMLS method is developed and analyzed. Then, by using the sta-
bilized IMLS method, a stabilized GBNM is presented for potential
problems and Stokes problems in Section 4. Finally, numerical
examples and conclusions are provided in Sections 5 and 6,
respectively.

2. The IMLS method and its stability analysis

2.1. Notations

Let = { } =X xi i
N

1 be a set of N nodes in a bounded domain Ω ⊂ n,
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A set X of data sites is said to be quasi-uniform with respect to a
positive constant C if
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where ( )ρB x, stands for the ball of radius ρ( )x centered at x.
In particular, the influence domain of the node xi is
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where ρi is the radius of Ri. As in Refs. [24,25,30], ρi can be chosen
to be proportional to the fill distance ΩhX , .

The set { } =xi i
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Ω composed of N balls Ri centered at xi. Moreover, given Ω∈x ,
assume that there are τ( )x nodes xi such that R∈x i. Clearly, τ( )x
is not a fixed number and varies with the point x. Then, we use the
notation … τ( )I I I, , , x1 2 to express the global sequence numbers of
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be the weight function used in the IMLS method, where the
function φ is nonnegative, compactly supported in the unit ball

( )B 0, 1 , γ-th times continuously differentiable, and its derivatives
up to order γ are bounded. Generally, the function φ can be chosen
to be the constant one or any weight function used in the MLS
approximation.

Let

( ) ( ) ( ) Ω( ) = … ∈ ( )
⎡⎣ ⎤⎦p p pp x x x x x, , , , 3m0 1

T

be a basis for the space ^
m
n , where ^

m
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variate polynomials of degree m̂ of dimension
( ) ≔ +

^ + !
^ ! !

m 1
m n

m n
. For

any = …j m0, 1, 2, , , the largest degree of ( )p xj is denoted by ĵ .

Here, ĵ depends only on j and the spatial dimension n.
As in the MLS approximation, the commonly used basis func-

tions in the IMLS method are non-scaled. For example, in 1D space

( = )n 1 , ^ = −j j 1 for all = …j m0, 1, 2, , , and a complete basis of
degree m̂ is given by
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In 2D space ( = )n 2 , we have ^ =0 0, ^ = ^ =1 2 1, ^ = ^ = ^ =3 4 5 2,
^ = ^ = ^ = ^ =6 7 8 9 3, and a complete cubic basis is given by
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