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a b s t r a c t

The purpose of this work is to numerically find the optimum location of constant potential anodes to
ensure complete structure surface protection using a cathodic protection technique. The existence of
sacrificial anodes is originally introduced through the boundary conditions of the corresponding
boundary value problem (BVP). However, if constant potential galvanic regions are introduced through
its boundaries, then finding their optimal location is not an easy task due to the necessity of redefining
boundary geometric nodes and the arrangement of virtual sources for the standard method of funda-
mental solutions (MFS) formulation. Therefore, in this work, the galvanic anodes are introduced as source
terms using a Gaussian function. Hence, the boundary remains the same for different anode positions.
The optimization process includes the identification of the following parameters characterizing the
Gaussian function: the optimum coordinates of the centre of the anode, a factor that involves the in-
herent potential of the electrode and a proportionality factor for the electrode diameter. The MFS
methodology coupled with a genetic algorithm presented good results for this multiobjective optimi-
zation procedure. This fact can be seen in the several results of applications that are discussed in this
paper, considering numerical simulations in finite regions in R2.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cathodic protection (CP) is a technique to reduce the corrosion
rate of the metal surface by making it the cathode of an electro-
chemical cell. In practice, the goal is to provide a uniform potential
distribution on the metal surfaces, limited by a minimum potential
value to guarantee protection from the corrosion using an external
power source (impressed current CP) or by utilizing a sacrificial
anode [1,2]. In this work, it is considered the case of sacrificial
anode system, where the galvanic relationship between a sacrifi-
cial anode material, such as zinc or magnesium, and the structure
is used to supply the required CP current.

The most commonly used methods for modelling cathodic
protection systems are finite element method (FEM) and boundary
element method (BEM). However, the method of fundamental
solutions (MFS) is a technique which can also be applied to CP
problems (see references [3,4]). Just like BEM, MFS is applicable
when a fundamental solution of the differential equation in
question is known, with the advantage of not requiring any in-
tegration procedure or specific treatment for the singularities of

the fundamental solution. The BEM and the MFS are the most
appropriate techniques to solve problems involving galvanic cor-
rosion and CP systems, mainly to solve large problems and con-
sidering homogeneous conductive medium. These methods re-
quire only the representation of anodes and cathodes surfaces,
which leads to better resolution and reduction in computer run
time when compared to FEM. Mathematical simulations of
cathodic protections systems using FEM can be seen in [5–7],
where compact support functions were used to simulate constant
potential electrodes in electrochemical process.

Due to its accuracy and simplicity of mesh generation, the BEM
is usually used for numerical simulations of sacrificial anode CP
systems. Miyasaka et al. [8], for example, evaluated the compu-
tational accuracy of BEM to estimate the galvanic corrosion and CP
in an actual field. Abootalebi et al. [9] determined the optimum
location of zinc anode electrode using BEM in 2D. In addition, the
influence of anode length and paint defect on corrosion current
density and potential distributions of sacrificial anode CP system
were investigated. Several different applications of BEM to study
CP systems have been reported in the literature, including re-
ference to practical analyses performed by offshore oil companies
[10–12]. The BEM implementation includes a Newton–Raphson
solution algorithm to accommodate possible nonlinear boundary
conditions [13]. Coupled with the numerical method to solve the
Laplace equation, optimization algorithms can be used to
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determine the optimum location and the corresponding current
intensity values of the anodes in order to satisfy a protection cri-
terion. Hence, the minimization of an objective function using, for
example, genetic algorithms (GAs) and a penalty method for
handling constraints can be adopted. This type of optimization can
and has also been successfully performed using BEM [14,15].

Kupradze and Aleksidze [16] first proposed the basic ideas for
the formulation of the MFS. In order to construct the solution, the
MFS uses only a superposition of fundamental solutions associated
to the problem, with singular points (virtual sources) located
outside the domain. The accuracy of the MFS numerical solution
depends on the radius of such a circle or on the distance from the
virtual sources over the geometrically similar boundary contour to
the problem boundary, especially due to possible ill-conditioning
and/or rank-deficiency of the algebraic system of equations
formed. The MFS has successfully been applied for solving several
problems. For example, Costa et al. [17] developed numerical fre-
quency domain formulations to simulate the 2D acoustic wave
propagation in the vicinity of an underwater configuration which
combines two sub-regions using the MFS. More recently, Fontes Jr.
et al. [18] applied a regularized method of fundamental solutions
coupled with the numerical Green's function procedure to solve
linear elastic fracture mechanics (LEFM) problems. Problems with
nonlinear boundary conditions solved by MFS can be treated as
nonlinear least squares problems [19]. Therefore, to determine the
coefficients of the linear superposition of the fundamental solu-
tions and the positions of the virtual sources, a nonlinear least
squares algorithm is found necessary. In the present work, the
minimization of the nonlinear functional is done using the MIN-
PACK [20] routine LMDIF, which is a modified version of the Le-
venberg–Marquardt algorithm [21]. The Levenberg–Marquardt
method has been highly recommended when Jacobian is rank-
deficiency or nearly so.

Santos et al. [3] were the first to use standard MFS successfully
in the numerical simulations of CP systems. In the paper cited, the
authors proposed a GA with the MFS to simulate cathodic pro-
tection systems with nonlinear boundary conditions. The adopted
GA was used to minimize a nonlinear error function, whose design
variables were the coefficients of the linear superposition of fun-
damental solutions and the positions of the virtual sources, ran-
domly distributed outside the problem domain. In Santos et al. [4]
was presented a formulation using a GA and the MFS to determine
the optimum location and the optimum current intensity of the
anodes inserted in the electrolyte leading to a practical optimized
design procedure. The results presented in this paper included a
comparison with a direct boundary element (BEM) solution
procedure.

The purpose of the present paper is to use a genetic algorithm
(GA) with the MFS for optimizing the anode position in a galvanic
cathodic protection system. Furthermore, the constant potential
circular anodes are here mathematically represented by a Gaussian
function. Thus, the GA will be used to search the Gaussian function
parameters: coordinates of the centre of the anode, a factor that
involves the inherent potential of the anode and a proportionality
factor for the anode diameter. The main advantage of considering
constant potential regions as the source term is that the boundary
conditions remain the same, no matter where the anodes are lo-
cated. The circular anodes are considered and, therefore, a good
approximation for the source term is a function with circular
compact support like the Gaussian function. In the MFS case, it is
not necessary for the arrangement of the virtual sources inside the
galvanic anodes (cavities), when they are introduced as source
terms. A particular solution to the inhomogeneous differential
equation resulting will be evaluated using the dual reciprocity
method (DRM). In the DRM, the source term is approximated by a
finite series of radial basis functions with an approximation to

particular solution calculated analytically from source [22]. The
corresponding homogeneous solution is found by MFS.

This text is organized as follows: in Section 2 is presented a
standard electrochemical potential problem, i.e., the Laplace
equation with boundary conditions given by constant potential
(anode) and polarization curve (cathode). The decision of in-
troducing the Gaussian function to model constant potential gal-
vanic regions is also discussed in Section 2. The standard MFS
formulation with the dual reciprocity method for solving the
Poisson equation with nonlinear boundary conditions is discussed
in Section 3. The multiobjective optimization problem and the
genetic algorithm are showed in Section 4. This algorithm is cou-
pled with MFS to guarantee protection from the corrosion by
utilizing a sacrificial anode in the numerical examples solved
in Section 5. The paper ends with some discussions found in
Section 6.

2. Boundary value problem (BVP)

For a homogeneous and isotropic electrolyte (domain Ω) sys-
tem of conductivity k, as illustrated in Fig. 1, the electrochemical
potential problem studied obeys the Laplace equation:

ϕ Ω∇ ( ) = ∈ ( )k x x0, , 12

subjected to the following boundary conditions:

ϕ Γ( ) = ( ) ∈ ( )i Fx x, , 21

ϕ ϕ Γ( ) = ∈ ( )x x, , 30 2

where Γ Γ Γ≡ ∪1 2 is the boundary of Ω, ϕ0 is the fixed potential of
anode, ( )i x is the current density in the outward normal direction
n and ϕ( )F is a nonlinear function of ϕ given here by the following
polarization curve [23]:
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with ϕ and i having units mV and μA/cm2, respectively, and β1, β2,
β3 and i1 are given constant parameters: β = 24 mV1 ,

Fig. 1. The original potential problem.
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