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In this study we investigate steady, pressure-driven, two-dimensional flow of Newtonian fluid through
slip-patterned, rectangular channels in the low Reynolds number limit. The slip flow regime is modeled
using the Navier's slip boundary condition. In this work, we present only in-phase patterned slip. Sub-
sequently, based on the characteristic length of the patterning, we have considered two subcases, namely
large and fine patterned slip. Boundary element method (BEM) is used to numerically solve Stokes
equation and obtain the streamline profiles. Streamlines, velocity profiles, pressure gradients, and shear
stresses are analyzed to gain a proper understanding of the flow mechanics.
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1. Introduction

Modeling viscous incompressible flows over solid surfaces re-
quire significant assumptions about the boundary conditions at
the solid-liquid interface. One of the most accepted boundary
condition is the no-slip boundary condition which assumes that
the velocity of the fluid element adjacent to a solid boundary is
equal to the velocity of the solid boundary. This is an over-
simplification of the effect of the solid wall on the fluid and is
correct only in certain specific circumstances. Thin film dynamics,
problems involving multiple interfaces, flows over hydrophobic
surfaces, and flow of rarefied or rheological fluids are a few in-
stances where the no-slip boundary condition fails. Over the years,
in an attempt to correctly model the interaction between the solid
wall and the liquid, various ingenious models have been
developed.

Historically, Navier [1] was the first to propose a slip boundary
condition on a solid wall. This model states that the slipping ve-
locity of the fluid at the solid-liquid interface should be propor-
tional to the shear stress at that point. Following this, Helmholtz
and Pitrowski [2] introduced the concept of slip-length for the
occurrence of slip next to a solid wall. Studies by Kundt and
Warburg [3] suggested that the coefficient of slip was inversely
proportional to the pressure. Later, Maxwell [4] proposed a model
to describe the slip flow of a gas adjacent to a solid boundary. A
thorough historical discussion of the prior work in this field can be
found in Kennard [5]. Several experiments have been carried out
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to understand the fundamental nature of slip over solid surfaces.
One of the early endeavors of calculating the slip at the wall was
undertaken by Mooney [6] who introduced an approximate
methodology to calculate the slip velocity (the Mooney technique).
Early experiments done on capillary rheometers by Vinogradov
and Ivanova [7] revealed that the slip velocity might also depend
on the normal stresses. Rajagopal et al. [8] have considered the
dependence of slip velocity on both shear stress and normal stress,
and shown that in general traditional methods of calculating the
slip velocities, like the Mooney Method, might be ineffective.
Numerous studies aimed at analyzing the effect of other important
factors, such as, viscous heating and molecular weight, on wall slip
of molten polymers [9,10]. The slip length introduces a virtual
surface, on which the velocity may be zero below the actual sur-
face. Various factors influence the range of slip length. For ex-
ample, a large slip length can be seen in situations where nano-
bubbles are trapped on a hydrophobic surface [4,6,5,7]. Irregular
surfaces are encountered in most applications involving micro-
channels. Imposing such complex boundary conditions in analy-
tical solutions might be a big challenge. Thus, one has to rely on
computational methods.

Computational study of fluid flow problems is not a new do-
main of study. A variety of techniques such as finite difference
method (FDM), finite element method (FEM) and finite volume
method (FVM) have been used to investigate fluid flows over
complex geometries. A significant advantages of boundary ele-
ment method (BEM) over the techniques mentioned above is that
(i) the dimension of the computational domain is reduced by order
one, thus saving memory and computational time, and (ii) the
solution can be achieved at any point inside the domain.


www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2016.09.006
http://dx.doi.org/10.1016/j.enganabound.2016.09.006
http://dx.doi.org/10.1016/j.enganabound.2016.09.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.09.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.09.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.09.006&domain=pdf
mailto:rajas@iitkgp.ac.in
http://dx.doi.org/10.1016/j.enganabound.2016.09.006

96 CS. Nishad et al. / Engineering Analysis with Boundary Elements 73 (2016) 95-102

Currently, the ability to fabricate structures and patterns on the
micrometer and nanometer length scale [11,12] has triggered a
wide range of scientific investigations. Slip or no-slip condition
between a solid surface and a fluid strongly depends on the nature
of interaction between them. Hydrophobic surfaces portray a ‘slip’
boundary condition whereas hydrophilic surfaces generally give
rise to the no-slip condition. Various studies on chemical mod-
ification of surfaces have been carried out to make it hydrophobic/
hydrophilic [13,14]. In this context, designing materials with al-
ternate slip and no-slip are useful so that drag reduction occurs
and hence there is a possibility of reducing material damage.
Kamrin et al. [15] have considered such phenomena and studied
the importance of effective slip. Alternating no-slip and infinite
slip was used for flow in a cylinder by Lauga and Stone [16]. Hendy
et al. [17] have introduced a novel slip boundary condition by
varying the slip length along the principal direction of a flow.
Further, they have observed a good agreement between theory
and results based on molecular dynamics simulations. The concept
of patterned slip has been used recently by Zhao and Yang [18],
while studying electro-osmotic flows in micro-channels. There is
now a huge interest in methods for manipulating the behavior of
fluids for probable use in small, integrated devices for performing
various tasks: (a) manipulations at the cellular length scale (and
below) and the ability to detect small quantities and manipulate
very small volumes (typically less than 1 pl) [19-22], and (b) use in
microsystems to perform fundamental studies of physical [23],
chemical [24], and biological processes [25-27]. These types of
investigations of fluid flows have reinvigorated interest in a clas-
sical area of fluid dynamics, low Reynolds number flows.

In this work, we use Stokes equation, which provides a very
good description of fluid flows at low Reynolds numbers, to ana-
lyze fluid flows through micro-channels. The direct biharmonic
boundary integral equation, discussed by Kelmanson [28], is used
to investigate the steady, pressure-driven, two-dimensional flow
of a Newtonian fluid through slip-patterned channels in the low
Reynolds number limit. The slip condition at the boundary is im-
posed by using the Navier's slip boundary condition.

2. Mathematical formulation

The flow of a two-dimensional viscous incompressible fluid at
low-Reynolds number is governed by the steady Stokes and con-
tinuity equation which in the respective non-dimensional forms
are,

VP=V?U, Vv.U=0, ¢))

where U and P denotes velocity and pressure respectively. The
non-dimesionalization is done as follows:

u=2 x=% p-E

U L [IU
The mass conservation equation V. U = 0 allows one to introduce
stream function given by U=2%, V=- 2, where (UV) denote
velocity components in (X,Y) cartesian coordinate system. Elim-
inating pressure using Stokes stream-function, Stokes equation

reduces to a biharmonic equation, which is given by,

vy = 0. )

It may be noted that there are variant approaches to solve Stokes
equation using boundary element method, namely primitive
variables (Stokesless formulation), stream-function vorticity for-
mulation, etc. In general, the Stokesless formulation is expected to
give very accurate results, that involve Green's function corre-
sponding to velocity and stress tensor. On the other hand, stream-

function vorticity variables formulation involves Green's function
corresponding to Laplacian and biharmonic operators. However,
this method suffers some disadvantages which are (i) difficult to
extend in 3-D, (ii) unable to compute pressure filed explicitly, (iii)
not suitable for the problems which involve the corner singularity.
In order to remove the effect of the corner singularity either
(i) large number of boundary elements can be used for dis-
cretization, or (ii) incorporating the analytic nature of the singu-
larity and modifying the BBIE method. In spite of these dis-
advantages, the stream-function vorticity variable formulation was
used widely.

We use the direct biharmonic boundary integral equation
methods (BBIE) to solve Eq. (3). In the past, several researchers
have discussed BBIE methods [28-36] in significant detail. There-
fore, in this study we present the aforementioned method con-
cisely. In order to solve Eq. (2) using the boundary element
method, the biharmonic equation is rewritten in terms of stream
function-vorticity variables,

Viy=-0, Veo=0. 3)

Let G and GB be the fundamental solutions of Laplace's and bi-
harmonic equations respectively, which satisfies V2G" = s(lq — pl),
and V*G® =5(q - pl), where 5 is the dirac delta function and

= loglp — ql, and G = Ip — ql(loglp — ql — 1) [37]. Let us denote a
general field point by p(X,Y) and an integration point on the

boundary by q(X,, Yp), so that p € Q U 02 and q € 0.
Applying the Green's second identity to Eq. (3), we obtain the
following coupled system of integral equation at a general field

point p:
GL
owe = [ [w(q)a . D _ i, g ,5 )]ds(m
q q
1 GB 0
. [r(q)a . D _ e, q)"”(q)]ds(q),
)
1P = [ [m(q)a P _ g, q)a("“”]dsw),
ny g (5)
where /A(p) is defined by,
2x, ifp e Q,
ap) =14z ifpeae
0, ifp¢QuoQ. (6)

The boundary 0@ is discretized into N constant elements ¢
containing the mid-element boundary nodes q; (=1, 2,...N).
Over each element, we approximate the values of y, ;ﬂn, , and ?Tl:

. . . i dwj
by piecewise constant functions uyj, ? wj, and ;’J, for
n n

j=1,2,..,N

Applying the discretized form of Eqgs. (4) and (5) at the mid-
point p=gq, € 02; (i=1,2, ..., N) of each element gives a coupled
system of vector equations,

oy dw;
Ay + B,] + Cjo; + Dj— o =0, o
q

A w; +B —0,
{had] Ua (8)

where the coefficient matrices A, B, C, and D are given by,
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