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a b s t r a c t

This paper presents a generalized smoothing techniques based beta finite element method (βFEM) to
improve the performance of standard FEM and the existing smoothed finite element methods (S-FEM) in
solid mechanics. As we know, the edge-based (for 2D) or face-based (for 3D) strain smoothing techniques
can bring much more accurate solutions than standard FEM, and offer lower bounds for force driven
problems. The node-based smoothing technique with “overly-soft” feature, on the other hand has a
unique property of producing upper bound solutions. This work proposes a novel generalized S-FEM
with the smoothing domains generated based on both edges/faces and nodes. An adjustable parameter β
is introduced to control the ratio of the area of edge/face-based and node-based smoothing domains. It is
found that nearly exact solutions in strain energy can be obtained by tuning the parameter, making use of
the important property that the exact solution is bonded by the solutions of NS-FEM and ES/FS-FEM.
Standard patch tests are likewise satisfied. A number of numerical examples (static, dynamic, linear and
nonlinear) have shown that the present βFEM method is found to be ultra-accurate, insensitive to mesh
quality, temporal stable, capable of modeling complex geometry, immune from volumetric locking, etc.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The standard constant finite elements such as 3-node trian-
gular or 4-node tetrahedral elements (T-elements) were popular
and preferred in practical mechanics problems for many years, as
they offer many advantages such as convenience in FE im-
plementation, high mesh quality, adaptive analysis with mesh
rezoning, etc. And sometimes triangular/ tetrahedral mesh (T-
mesh) may be the only option for mesh generation of complex
geometries (e.g., biomechanical problems with irregular geome-
trical shapes). However, compared with quadrilateral/hexahedral
meshes, the T-mesh using constant strain T-elements has its own
numerical drawbacks including the inaccuracy, shear and volu-
metric locking due to excessive stiffness, especially for large de-
formation problems. As such, it is usually not recommended to use
T-mesh in commercial FEM software packages.

In order to overcome the volumetric locking for plane strain

problems and poor accuracy in stress solution, some new FEM
approaches have been developed including supplementing the
element displacement field with additional nodes and utilizing
reduced numerical integration rules to calculate the element
stiffness matrix. However, these procedures are not applicable or
compatible with constant strain T-elements. T-mesh with second-
order or higher-order elements is thought to a good option to
avoid the locking issues, but it may be ineffective for extremely
large deformation problems due to the intermediate nodes [1,2]. In
order to dealing with these element defects of T-mesh, a number
of researchers made their efforts to improve it in the past 30 years.
For example, Allman [3,4] improved the accuracy of triangle ele-
ments by using vertex connectors which included rotations.
However, it exhibited an unusual type of zero energy mode, in
addition to the rigid body movements. Reference [5] made a cri-
tical assessment of the Allman’s triangular membrane element
with drilling degrees of freedom via examining the performance of
the element combined with a triangular plate bending element.
Huang et al. [6] modified Allman's triangular planar element with
drilling degree of freedom and dealt with spurious energy mode
by an introduced constraint which ensures that the drilling degree
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of freedom is a true rotation in elasticity. Piltner and Taylor [7]
developed the enhanced triangle elements to deal with nearly
incompressible plane strain problems. However, the requirement
of more degrees of freedom has limited the practical applications
of these methods. In References [8,9], elements with rotational
freedom were also designed to improve the bending performance
or stiffness matrices for planar triangular elements. Reference [10]
proposed a weighted least-squares formulation for deriving con-
stant strain T-elements, which claimed to be possible to eliminate
volumetric locking. In Ref. [11], it introduced a node-based uni-
form strain element for T-mesh and it is capable in avoiding the
volumetric locking and reducing the effects of shear locking for
static linear elastic problems. Reference [12] used bubble function
displacements in conjunction with the assumed strain formulation
to construct triangular solid shell elements for precluding mem-
brane locking effect.

In the past several years, Liu and his group developed
smoothed finite element methods (S-FEM) [13–19] by introducing
the gradient/strain smoothing techniques to FEM settings and
using direct (no mapping) point interpolation for computing shape
functions. The gradient/strain smoothing techniques using Green’s
theorem have been exploited in the past few decades for the
quasi-conforming elements for plates and shells [20], stabilizing
nodal integration of meshfree methods [21,22] and natural ele-
ment method [23]. The essential idea of S-FEM is to utilize a
standard first-order finite element mesh (in particular T-mesh) to
build numerical models with good performance [24]. In S-FEM, the
compatible strain field is constructed in a Galerkin weak form
model to produce some good properties. Compared with the ele-
ment-based implementation in the standard FEM, the S-FEM
models evaluate the weak form based on smoothing domains. The
smoothing domains can be constructed within the elements but
usually beyond the elements, which is able to bring in the in-
formation of the neighboring elements. According to different
fashions in the creation of smoothing domains, several different
types of S-FEM models have been proposed: the cell-based
smoothed FEM (CS-FEM) [16,19], node-based smoothed FEM (NS-
FEM) [18], edge based smoothed FEM (ES-FEM) [15,17], face-based
smoothed FEM (FS-FEM) [25], etc. Compared with the standard
FEM, the overestimation behavior of stiffness values shall be re-
duced or alleviated in S-FEM and it significantly improves the
accuracy of both primal and dual quantities [26]. In addition, the
evaluation of shape function derivatives involved in FEM is avoi-
ded in S-FEM. The applications of S-FEM models in elasticity have
shown they are insensitive to mesh distortion (compared with
standard FEM) due to the absence of isoparametric mapping
[27,28]. Furthermore, an S-FEM model can use the same back-
ground mesh as the standard FEM model, which does not require
introducing additional degrees of freedom.

The intensive numerical studies have already demonstrated
that the class of S-FEM models shows some advantages over
standard FEM [24]. Among these S-FEM models, the ES-FEM (or
FS-FEM for 3D) possesses some properties such as: i) ES/FS-FEM
can produce solution with properties of super-convergence and
higher accuracy compared with corresponding FEM model; ii) it
usually generates lower bound to the exact solution in text of
strain energy, but still has the feature of overestimation of stiff-
ness; iii) it can use T-mesh which can be conveniently generated
especially for complex geometries; iv) the ES/FS-FEM models are
always stiffer than NS-FEM or FEM, partially due to the number of
edges is always larger than the number of nodes with the same
background mesh; v) the vibration models using ES/FS-FEM are
often temporally stable and there are no spurious non-zeros en-
ergy modes found in free vibration analysis [24]. Meanwhile, the
NS-FEM has some interesting properties [29–31]: i) it has the
unique upper bound property in strain energy as it may extremely

soften the over-stiffness of the corresponding standard FEM
model; ii) it achieves accurate and often super-convergent stress
solutions; iii) it is effective in overcoming volumetric locking; iv) it
works effectively with T-mesh; v) it performs spatially stable but
may be temporally instable with non-zero-energy spurious modes.

Considering the fact that the ES-FEM is capable of producing
the accurate solution from the lower bound (better than standard
FEM) and the NS-FEM can approximate the solution from the
upper bound, a generalized mixed smoothed FEM model can be
naturally conceived in order to obtain the exact or close-to-exact
solution measured in an energy norm. Another fascinating aspect
is that the generalized smoothed FEM can be versatile and may
inherit the merits from both the NS-FEM and ES/FS-FEM. In this
work, a novel ultra-accurate generalized smoothing techniques
based beta finite element method (βFEM) based on T-mesh is
developed and then applied in different mechanics problems,
particularly for 3D solid mechanics problems. In βFEM, the
smoothing domains will be constructed by a mixed fashion of
node-based and edge/face-based smoothing techniques, in which
the adjustable parameter β ∈ [ ]0, 1 tunes the portion of area of the
node-based and edge-based smoothing domains. The idea of βFEM
can be regarded as a utilization of the overestimation property of
ES/FS-FEM and the unique under-estimation property of NS-FEM
using T-elements, and hence it can be “tuned” to have good fea-
tures of both methods. Since both the NS-FEM and ES/FS-FEM with
T-elements are spatially stable [24], the presented βFEM will be
spatial stable and the convergence can be guaranteed. In addition,
the scheme ensures the variational consistence and the compat-
ibility of the displacement field, which ensures reproducing linear
field exactly [32–34].

The paper aims to propose and formulate the novel generalized
βFEM for solid mechanics problems with first-order triangular/
tetrahedral mesh, using the mixed edge /face-based and node-
based strain smoothing techniques. The governing equation and
different smoothing techniques utilized in this work will be briefly
introduced in Section 2. The idea of βFEM for both 2D and 3D
problems will be presented in Section 3. Section 4 considers the
implementation aspects for vibration analysis and large deforma-
tion problems which will be shown in subsequent numerical ex-
amples. The standard patch test and numerical examples will be
discussed in Sections 5 and 6. The conclusion will be summarized
in the last section.

2. Background of the problem and strain smoothing
techniques

The target of our method is to solve the solid mechanics pro-
blems using the weakened weak (W2) Galerkin formulation [33].
For example, we can consider an elastic deformable body occu-
pying domain Ω, subjected to the body force fb and the traction f t

on the natural boundary Γt . The object undergoes arbitrary virtual
displacements with the compatible virtual strains δε and internal
displacement δu. The dynamic equilibrium equations, which
contain the inertial and damping forces, can be described in the
following form:

∫ ∫ ∫ ∫ ( )
δ Ω δ ρ Ω δ Ω δ Γε ε − [ − ¨ − ̇] − + =

Ω Ω Ω Γ

⎛
⎝⎜

⎞
⎠⎟ 1

D cu b u u u f u fd d d d 0b

t

tT T T T

where D is the Hooke matrix of elastic constants which is related
to modulus E and Poisson’s ratio ν. For static problem, the second
term in Eq. (1) will be vanished. The strain tensor ε can be ex-
pressed by displacement u using compatibility relation:

ε = ∇ ( ) ( )u x 2S
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