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A B S T R A C T

As an evident drawback for using the conventional boundary element method (BEM), an extra domain integral
is present in the boundary integral equation when body-force effects are involved. For 2D anisotropic
elastostatics, the extra domain integral has been exactly transformed to the boundary; however, an additional
line integral intersecting the domain is involved for general cases to make the transformation. For a multiply
connected region, this process is quite involving and computation-wise inefficient indeed, especially when its
geometry is very complicated. In this article, a new approach is proposed to make the transformation, yet
without involving extra line integrals. By this approach, the BEM's notion as a boundary solution technique is
completely restored. In the end, a few benchmark problems are studied to demonstrate the veracity of
formulations as well as our successful implementation in an existing BEM code.

1. Introduction

Since the 1970s′, anisotropic materials have been extensively
applied for various purposes and thus, research on their engineering
analysis has become an important topic. For engineering analysis, it is
quite to simplify practical problems to two-dimensional cases under
many circumferences. Although some theoretical principals may apply
for this purpose, recourse to numerical tools, such as the finite element
method (FEM) and the boundary element method (BEM), is necessary
for general cases, especially when complicated boundary conditions
and geometrically complex domains are treated. In contrast with the
domain solution technique like the FEM, the BEM has been well
recognized as an efficient numerical method for the engineering
analysis. However, as a drawback for the conventional BEM analysis,
body-force effects (see e.g. [5,8]) are present in the boundary integral
equation (BIE) as an additional domain integral. Any attempt to
directly evaluate the domain integral shall inevitably confront with
the problem of domain discretization that will destroy the BEM's
notion as a truly boundary solution technique.

Over the years, several approaches have been proposed to deal with
the domain integral, which include special volume integration schemes
(e.g. [2]), particular integral approach (e.g. [3]), dual reciprocity
method (e.g. [4]), approximation of radial basis functions [11], and
the exact transformation technique (e.g. [5]). Among these schemes,
the most elegant approach is the exact transformation technique
because no further numerical approximations are required. Besides,

by exactly transforming the domain integral to the boundary, the
BEM's nature of boundary discretization can be fully recovered. It had
not been successful to treat body forces in 2D anisotropic bodies until
Zhang et al. [12] presented the exactly transformed BIE. Due to the
mathematical complexity of the associated fundamental solutions for
3D anisotropic elasticity, the success of applying this technique to
three-dimensional problems was achieved very recently by Shiah [7].
Although this domain integral problem for 2D anisotropic elasticity has
been resolved [12], an additional line integral appears in the trans-
formed BIE to make the exact transformation. With reference to Fig. 1
for a multiply connected region as an example, the additional integral
needs to be evaluated for all intersected segments in the domain. When
the source point moves along the boundary in the collocation process,
many additional line integrals need to be calculated. For that, a robust
code is needed to correctly determine all intersected points on the
branch-cut lines of all source points. Obviously, this process is very
involving. In this article, a new approach is proposed to make the exact
transformation for treating body-force effects, yet without the need to
add extra line integrals. In the end, some benchmark examples are
presented to demonstrate the validity as well our successful imple-
mentation in the BEM analysis for body-force effects. Truly, the present
approach has completely restored the BEM's feature of boundary
discretization.

http://dx.doi.org/10.1016/j.enganabound.2016.10.001
Received 18 June 2016; Received in revised form 27 September 2016; Accepted 2 October 2016

⁎ Corresponding author.
E-mail address: ycshiah@mail.ncku.edu.tw (Y.C. Shiah).

Engineering Analysis with Boundary Elements 73 (2016) 170–180

0955-7997/ © 2016 Elsevier Ltd. All rights reserved.

crossmark

http://www.sciencedirect.com/science/journal/09557997
http://www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2016.10.001
http://dx.doi.org/10.1016/j.enganabound.2016.10.001
http://dx.doi.org/10.1016/j.enganabound.2016.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.10.001&domain=pdf


2. Transformed BIE with additional line integrals

Principally, the present work is based on the transformed BIE
presented by Zhang et al. [12]. However, for the transformed BIE to
hold true, additional line integrals are involved to remove the
discontinuity along the branch-cut lines of source points. Our work
aims to remove the necessity of including the line integrals such that
the conventional BEM's notion of purely boundary discretization can
be restored. Thus, a brief review of the transformed BIE is given here
before further derivations for the work are presented.

For two-dimensional anisotropic elasticity, the constitutive rela-
tionship between the stress σij and strain εij is governed by
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where the coefficients cmn and amn are the elastic stiffness and
compliance constants of the material, respectively. These compliances
may be given in terms of engineering constants as follows:

a E a E a ν E ν E
a η E η G a η E η G a G

= 1/ , = 1/ , = − / = − / ,
= / = / , = / = / , = 1/ ,

11 1 22 2 12 12 1 21 2

16 12,1 1 1,12 12 26 12,2 2 2,12 12 66 12 (2)

where Ek is the Young's modulus in the direction of the xk-axis and G12

is the shear modulus on the x1−x2 plane; νij is the Poisson's ratio, and
ηi,jl, ηij,l are the coefficients of mutual influence of the first and second
kind, respectively. Eq. (2) is also applicable to the case of plane strain,
provided bjk is substituted for ajk by

b a a a a j k= − / , ( , = 1, 2),jk jk j k3 3 33 (3)

where, with the index 3 referring to the x3-axis, am3 are given by

a ν E ν E a E a η E η G= − / = − / , = 1/ , = / = / .j j j j3 3 3 3 33 3 63 12,3 3 3,12 12 (4)

By introducing Airy's stress functions, Lekhnitskii [13] has shown
that the characteristic equation for an anisotropic material in stable
equilibrium is
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It has further been shown that the roots of this characteristic
equation must be complex, and are given by two distinct pairs of
complex conjugates. These roots are denoted by

μ α i β j= + , ( = 1, 2),j j j (6)

where i = −1 and βj must be positive from thermodynamic con-
siderations. For brevity, the index range of 1–2 for 2D problems will be
omitted for all equations in the remaining parts. By following the above
notation for material properties, the generalized variable of represent-
ing the position of a field point at (x1, x2) can be described by

z x x μ x x= ( − ) + ( − ),j p j p1 1 2 2 (7)

where (xp1,xp2) are the global coordinates of the source point P. When

body forces are present, the associated BIE, relating the displacements
ui and the tractions ti, is expressed as

∫ ∫ ∫
c P u P

U P Q t Q dS T P Q u Q dS B q U P q dV

( ) ( )

= *( , ) ( ) − *( , ) ( ) + ( ) *( , ) ,
ij i

S ij i S ij i V i ij

(8)

where cij is the free term, Bi is a body-force vector, U*ij and T*ij are the
fundamental solutions of displacements and tractions, respectively. As
derived by Lekhnitskii [13], the fundamental solutions for an arbitrary
field point Q on the boundary (or a field point q in the domain) when a
unit point-load is applied in the xj direction at P are given by
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where βik and Ajk are complex quantities associated with the material
constants [1], and Re{·} is the operator taking the real part of complex
quantities. For brevity, the relation between the source and the field
point (P,Q/q) in all fundamental solutions will be omitted from now on.

In elastostatics, the body force vector can be represented by the
gradient of a scalar potential, namely

B ϕ ϕ C= , = ,i i ii, , 0 (10)

where C0 is a constant. In elasticity, the potential function of a solid
(density ρ) under rotation (angular velocity ω) about the x3-axis is
given by

ϕ ρω x x= 1
2
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2
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For gravitational load along the xi-axis, it is

ϕ ρg x= ,i (12)

where g denotes the acceleration due to gravity. Obviously, the last
term in Eq. (8) is a domain integral that the present work targets to
transform. As derived by Zhang et al. [12], the domain integral
(represented by Vj) is rewritten as
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V
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(13)

As a result of applying the Gauss Divergence Theorem to the first
term on the right hand side of Eq. (12), one obtains

∫ ∫V ϕ U n dS ϕ U dV= * − * .j
s

ij i
V

ij i, (14)

Applying the following Green's identity

∫ ∫ϕ H H ϕ dV ϕ H H ϕ n dS( * − * ) = ( * − * ) ,
V

j ii j ii S
j i j i i, , , , (15)

and enforcing

H U* = * ,j ii ij i, , (16)

one may immediately obtain

∫ ∫ ∫ϕ U dV ϕ H H ϕ n dS C H dV* = ( * − * ) + * .
V

ij i
s

j i j i i
V

j, , , 0 (17)

A new function W*ji is introduced to satisfy

W H* = *.ji i j, (18)

By us of the Green's 2nd Theorem to transform the volume integral
in Eq. (17), one obtains

Fig. 1. The branch cut of a source point on the boundary of a multiply connected
domain.
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