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A B S T R A C T

In this paper, we describe a robust meshing algorithm for obtaining a mixed mesh with large number of hex-
ahedral/prismatic elements grown over the domain boundary respecting the user imposed anisotropic metric
where physics matter the most and in areas where it is required to have the least number of elements. The inner
section away from the boundaries is filled with the terminal octants of a non-conformal octree. The remaining
unmeshed portion of the domain within the hexahedral/prismatic faces is filled with narrow bands of tetrahe-
dra. The novel idea of the meshing algorithm is the formation of the cavity as slim as possible between the
exposed faces of the outer most boundary layers and the octant faces of the inner most terminal octants, in such
a way that the length scales of the cavity mesh spacings would allow the frontal tetrahedral meshing algorithm
robustly succeeding to fill the cavity respecting its boundary faces without recovery issues. The algorithm could
be applied to non-cubical, arbitrary geometries that can also be non-manifold. Each domain region is meshed
recursively and within which, the tetrahedral filling algorithm constructs as many manifold cavity shells as the
problem constrains are imposed by the boundary layers and the mesh size settings. The final hexahedral domi-
nant mesh is exported to a face-based finite volume format (OpenFoam) so that the non-manifold nature of the
mesh is captured by flux based numerical solvers consistently and accurately.

1. Introduction

Accurate computation of flow fields around complex geometries has
many practical applications and remains a challenge. Understanding of
hydrodynamics of surface-ships and submarines often relies on numer-
ical solution of the Reynolds-Averaged-Navier-Stokes (RANS) problem.
The need to discretize the exterior volume in the immediate vicinity of
the structure to resolve the viscous boundary-layer, as well as include
large extents of the exterior volume including the free-surface, often
result in excessively large numerical problems. Due to the ability to
discretize large volumes with fewer elements when compared to tetra-
hedra, hexahedral meshing of the volume in such applications offers
computational savings over a purely tetrahedral approach. For appli-
cations of interest here, flow fields generally impose greater gradients
around the boundaries than anywhere else in the domain. Alternatively,
the gradients do not change as much in the bulky interior regions of the
problem domain. Therefore, fine and gradient compatible directional
resolution in the mesh are needed to capture the solution gradients
around the boundaries for accuracy, and fewer elements are desired
to fill the space in the interior to save from thecomputational effort.
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For both accounts, the use of hexahedral/prismatic elements make
sense more than the tetrahedra. Hence, based on these observations,
our intent in this study is to come up with a fast and robust algo-
rithm of generating hexahedra dominant (HexDom) meshes where it
makes sense for the numerics of the computational physics simulation.
In the remainder of this section, we explore the hexahedral meshing
algorithms in the literature, attempt to point out their pros-cons and
introduce our approach.

The use of the octrees in meshing has been an attractive option due
to its definition of filling the space with hierarchically structured boxes
without much algorithmic complexity [1–3]. The algorithms that make
use of octrees in hexahedral meshing differ in the way how they treat
and respect arbitrary geometric shape of the boundary enclosing the
domain regions. In general, the boundaries can not be matched with
the regular, orthogonal shape of the octants unless the geometry is a
variant of or mappable to a cuboid.

Mapping option has been a favorable alternative due to its clear
algorithmic formulation and efficiency in producing quality grids, that
found enormous interest particularly in turbo-machinery, during much
of the 1980–90s [4–7]. In this category, the domain is partitioned into
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blocks, homomorphic to cuboid, so that a mapping technique between
the multi-block computational domain and the physical space could be
applied. Mapped meshing problem was formulated akin to solving a set
of elastic structural equations in elliptic or quasi hyperbolic PDE form
to compute the coordinates of the hexahedral element vertices corre-
sponding to the structured IJK equivalents defined in the computational
block space [8,9]. This formulation required the domain to be parti-
tioned into computational blocks and block faces/edges/vertices were
to be associated with the true geometry. It was often preferred to use a
facilitation step to compute the transfinite interpolation (TFI) followed
by the elliptic smoother to eliminate possible fold-overs and establish
orthogonality within some distance off the boundary layer walls [10].
Nevertheless, in general, the partitioning step remained to be the main
bottleneck of the mapping option. The success of the semi-automatic
partitioning alternative is debatable as the turn-around time to gener-
ate a quality hexahedral grid required a thorough training and a lot
of experience in partitioning the complex geometric models and map-
ping the blocks. Though many software products [11,12] opted to use
the semi-automatic approach in building the blocks, there were also
studies advocated to use the automatic partitioning algorithms. Hence
further research has been dedicated in the automation of the block par-
titioning schemes [13–15]. Some used the skeletal shape of the domain
in partitioning [16]. The skeleton of the domain boundary is nothing
but a dimensional reduction of its 3D volume to a surface where sur-
face points are equidistant to the 3D surface, a.k.a., the medial axis
(MA). The blocks were constructed by using the line and surface seg-
ments of the computed MA, thereby casting the problem of partitioning
the domain into the problem of computing its MA [17]. This was some-
what problematic as well since the MA computation itself required the
tetrahedralization of the domain. The stipulation is that numerically,
the centers of the circumspheres of the generated tetrahedra converges
to the true MA of the object [13]. Hence, the smoothness of MA sur-
face relies on the coarseness level of the volume meshing with no or
fewer interior vertices. There must be a required level of detail in the
boundary surface mesh to prevent the ripples in the MA surface forma-
tion which remains to be the major numerical issues in this category
[13,18]. In general, the state of the structured all hexahedral meshing
technology has come to reach its limit with algorithms whose success
depends on the effectiveness of its partitioning schemes and the accu-
racy of its elliptic solvers.

In this study, we use the octree based unstructured alternative by
compromising on the all hexahedral mesh argument with hexahedral
and prismatic element generation where it is desired the most as a bet-
ter suited element type based on the general physics of the numerical
problem. In the unstructured octree hexahedral dominant category of
algorithms, there are two majorly distinct approaches in the way the
octants match the curved boundaries. In the first approach, the set of
octants closer to the boundary is detected and quadrilateral boundary
octant faces are smoothed and projected over to the surface, implic-
itly creating the mixed type mesh on the surface [19–23]. This infla-
tion and/or projection step may cause invalidity and quality issues, and
requires heuristic complex algorithms to eliminate the invalid config-
urations that is extensively discussed by Schneider [1]. The ultimate
remedy in tackling the mismatch and eliminate invalidity is the adjust-
ment of the sampling size of the octree over the curved boundaries
which often results in undesired mesh size sensitivity and unpredictable
outcomes. As of late, the projection and snapping idea is furthered by
embedding the boundary layers via subdivision of the first layer off
the boundary (mother layers) with come restrictions on the first cell’s
height [24]. The second category consists of similar ideas akin to the
iso-surface extraction from a field data. The conformal mesh topology
at the intersections between the octants and the curved surface bound-
ary, is resolved by the use of intersection element templates depending
on the combinatorial look-up table according to the location of intersec-
tions within each octant [25,26]. These templates may result in highly
distorted element formations and may not have all hexahedra but cer-

Fig. 1. The geometry and mesh domains of HexDom: (a) The geometry domains; Γ1: The
outer surface boundary of the region domain Ω1, Ω1:The outer region domain between the
ellipse and the sphere, Γ2: The inner surface boundary of the region domain Ω2, Ω2:The
inner region domain for the sphere. The arrow shows the outer bound of the boundary
layer thickness of Γ2. (b) The mesh domains; 𝜔1: the cavity mesh between the surface
mesh of Γ1 and the outermost inner octants of Ω1, 𝜔2: the octant mesh domain belonging
to Ω1, 𝜔3: the cavity mesh between the innermost octants of Ω1 and the outermost layer
of prismatic boundary layer mesh, 𝜔4: the prism mesh in the boundary layer thickness of
Ω1, 𝜔5: the cavity mesh between the surface mesh of Γ2 and the outermost inner octants
of Ω2, 𝜔6: the octant mesh belonging to Ω2.

tainly more robust in its outcome in generating a valid mesh. However
this approach also suffers from its sensitivity to the local octree sizing.

As of late, there have been a series of improving ideas in the
way the hex dominant meshing is conceptualized [27–29]. The cen-
tral idea comes from the observation of the point distribution nature
of the structured all-hex meshing. The regular distribution of mesh
points guided by the enclosing boundaries, increases the chance of
constructing hexahedral mesh topology. Mathematically proven ‘frame
fields’ which is an extension to MAT concept is adopted to gener-
ate the regular point distributions [29]. The direct frontal approach
or extrusion of the hexahedral elements over this point set has been
studied. Alternatively, a tetrahedral frontal algorithm is proposed fol-
lowed by the merging of tetrahedra into hexes using sophisticated set
of templates [27]. Nevertheless, regardless of how the frontal algo-
rithm is implemented, the hexahedral fronts inevitably collide and
clash with each other not only in the domain but also on the sur-
face boundary, leaving pockets of unmeshed cavities that may have
dimensionally problematic or non-manifold topology and thus quite
difficult to mesh with tetrahedra. Even though the general application
to a wide range of complex boundaries has not been fully established
yet, there were also reports of promising results using this approach
lately [27].

Our idea is not too far off from the main point of the above technol-
ogy except algorithmically it is much simpler and more robust in gen-
erating hexes and forming the cavities. The central idea is to put hex-
ahedral elements where it is necessary for the accuracy and efficiency
of the physical numerical simulation. Hence, the two basic goals of our
algorithm is to generate hexes in the boundary layers and in the inte-
rior bulky sections non-conformally. Indeed, similar ideas have been
exercised by Yerry and Shephard [2,3] in which the boundary layer
generation process is considered as a post operation after the tetrahe-
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