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A B S T R A C T

A convergence study is presented for a form of gradient elasticity where the enrichment is through the Laplacian
of the strain, so that a fourth-order partial differential equation results. Isogeometric finite element analysis is
used to accommodate the higher continuity required by the inclusion of strain gradients. A convergence analysis
is carried out for the original system of a fourth-order partial differential equation. Both global refinement,
using NURBS, and local refinement, using T-splines, have been applied. Theoretical convergence rates are
recovered, except for a polynomial order of two, when the convergence rate is suboptimal, a result which also
has been found for the (fourth-order) Cahn-Hilliard equation. The convergence analyses have been repeated for
the case that an operator split is applied so that a set of two (one-way) coupled partial differential equations
results. Differences occur with the results obtained for the original fourth-order equation, which is caused by the
boundary conditions, which is the first time this effect has been substantiated.

1. Introduction

Classical continuum mechanics assumes that the solid or the
structure under consideration is of a dimension that is significantly
larger than its underlying microstructure, so that microstructural
effects can be ignored. When the effects of microstructure become
dominant – as is the case with localised shear bands in softening
geomaterials [1] – classical continuum mechanics is no longer suffi-
cient. Experiments have shown that specimens of a material with the
same geometry, but different dimensions, exhibit different mechanical
behaviour. This is called the size effect and has been recorded for quasi-
brittle materials (concrete, rock, ceramics) [2], metals [3], composites
[4] and micron-scale structures [5]. Indeed, the size effect, which has
been attributed to the existence of a material microstructure, is not
captured by classical continuum theories. Thus, enriching the classical
continuum model with an internal length scale which is related to its
material microstructure, enhances its applicability. This is the motiva-
tion behind the work of Mindlin [6] and Eringen and Suhubi [7],
although earlier work along the same lines has been done by the
Cosserat brothers [8]. A review and historical perspective is given in
[9].

In Mindlin's theory [6], twelve independent degrees of freedom at
two scales of deformation were identified: three displacement compo-
nents and nine microdeformation components. Three possible assump-
tions that can relate the microscopic deformation gradient and the

macroscopic displacement were outlined. The strain energy density can
be expressed as a function of strains and second derivatives of
macroscopic displacements thereby obscuring the multiscale nature
of the theory [6,10,11]. This special case defines gradient elasticity. In
statics, there are two additional parameters with the dimension of
length which could be related to the underlying material microstruc-
ture [12,13]. A simplification is achieved when these two length scales
are equal – an approach credited to Aifantis [14,15]. A proper
theoretical framework was provided in [16] and [17] using the
principle of minimum potential energy and principle of virtual work
respectively.

The Aifantis theory modifies the classical stress-strain relation by
making the stress also dependent on the Laplacian of the strain, thus
resulting in a fourth-order governing partial differential equation. To
solve the equation, standard C0-continuous elements cannot be used.
This is because higher order terms appear in the weak form, thus
requiring the derivatives of displacements to be continuous – C1-
continuity requirement. In principle, the problem can be solved by
Hermitian finite elements [18,19], mixed methods [20], meshless
methods [21], penalty methods [22,23], Langrange multipliers [24]
and subdivision surfaces [25]. However, all these methods have their
drawbacks in terms of efficiency or implementational convenience.
Thus, it remains worthwhile to explore new methods for the imple-
mentation of gradient elasticity.

An alternative approach is to use an operator split that creates two
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second-order partial differential equations. In this staggered approach
[26], the solution from the first equation (classical elasticity) serves as
input for the second equation which solves for the gradient-enriched
variables. Since this is a set of two second order partial differential
equations, it can be solved with C0-continuous elements. It is noted
that the approach suggested in Reference [26] is, strictly speaking, only
applicable to an infinite body where no enforcement of boundary
conditions is required [27]. Although it removes strain singularities,
Skalka et al. [28] found it incapable of predicting the desired stress field
around a crack in composite foams (cusp-like closure at crack tip),
again pointing out issues with boundary conditions i.e. difference in
boundary conditions compared with the fourth-order partial differen-
tial equation. These differences have also been pointed out in [9,29].

These restrictions have motivated Skalka et al. [28] to propose a
similar strategy for Eringen's model [30], i.e. a decoupling or one-way
coupling for the two second order partial differential equations. An
iterative procedure was proposed for Eringen's model (also formulated
by Askes and Gutiérrez [31] as implicit gradient elasticity) with the
length scale replaced by a parameter increment which is chosen to be
arbitrarily small. However, the choice of the number of iterations and
the convergence criterion are tied to crack properties; for an arbitrary
geometry, the choices seem unclear and may likely incur high
computational cost. Eringen's theory is an approximation of an earlier
nonlocal integral formulation [32–34]. However, it has been shown
that for certain loading conditions, fully nonlocal stress-strain laws
used in modelling Euler-Bernoulli elastic beams give solutions that
coincide with the standard local solution, and hence do not capture size
effects [35]. This can only be avoided either by combining local and
nonlocal curvatures in the constitutive equation or using a gradient
elastic model. [36,37].

When comparing the two solution strategies, a method which fulfils
the C1-continuity requirement is needed. Isogeometric Analysis [38] is
an extension of finite element analysis where the spline-based shape
functions used to approximate the geometry are used for the analysis as
well. Although coined and standardised in [38], other works along the
same lines exist [39,40]. The original drive behind isogeometric
analysis was to integrate the design and analysis processes, which
has the additional benefit of capturing the exact geometry, unlike
standard finite element analysis. Moreover, it comes with the advan-
tage of ease in achieving higher degree of continuity. This is due to the
Non-Uniform Rational B-Splines (NURBS) shape functions.
Isogeometric analysis has been used where higher continuity is
required such as in solving the Cahn-Hilliard equation [41–43],
gradient damage models [44] and also in the context of gradient
elasticity [45–47,17]. In [43], the direct fourth order Cahn-Hilliard
equation and a mixed formulation with coupled equations have been
studied using isogeometric analysis. The study concluded that direct
discretisations of higher order partial differential equations are more
efficient than mixed formulations but approximations of sufficient
order are required to obtain optimal convergence rates.

This work compares convergence rates for the Aifantis gradient
elasticity theory with and without operator split. The paper is organised
as follows: Section 2 presents the Aifantis gradient elasticity formula-
tion including the operator-split. Section 3 starts with a brief descrip-
tion of NURBS and Bézier extraction in isogeometric analysis [48]
before discretisation of the gradient elasticity formulation with and
without operator split. In Section 4, the two discretisation approaches
are compared in terms of error norms and convergence rates. T-splines
are introduced in Section 5 and finally, some more examples using
gradient elasticity are presented.

2. Laplacian-based gradient elasticity formulations

2.1. Aifantis' gradient elasticity formulation

The gradient elasticity theory of Aifantis [14,15] is considered

herein. The theory extends the classical linear elastic constitutive
relations by introducing the Laplacian of the strain as follows:

σ D ε ε= ( − ℓ )ij ijkl kl kl mm
2

, (1)

where σij is the stress tensor, εkl is the strain tensor, and ℓ is a length
scale parameter. Dijkl is the constitutive tensor, and for an isotropic
linear elastic material, it is given by:

D λδ δ μδ δ μδ δ= + +ijkl ij kl ik kl il kl (2)

λ and μ are Lamé constants, and δij is the Kronecker delta. The
accompanying equilibrium equations are:

σ b+ = 0ij j i, (3)

where a comma denotes partial differentiation and bi are the body
forces. Substituting the stress-strain relation, Eq. (1), and assuming
small displacement gradients, one obtains the following fourth-order
partial differential equation:

D u u b( − ℓ ) + = 0ijkl k jl k jlmm i,
2

, (4)

where uk are the displacement components.

2.2. Ru-Aifantis theorem: operator-split

In the staggered approach of the Ru-Aifantis theorem, the fourth-
order equation in Eq. (4) is split into two second order partial
differential equations [9,49]:

D u b+ = 0ijkl k jl
c

i, (5)

u u u− ℓ =k k mm k
c2

, (6)

where uk
c is the displacement field that obeys the classical elasticity

equation eq. (5), hence the superscript (•)c. Eq. (5) is first solved for uk
c

and the result is used in Eq. (6) to solve for uk. Thus, there is one-way
coupling between them.

3. Isogeometric finite element discretisation

In traditional finite element analysis, Lagrange polynomials serve
as the basis or shape functions. Isogeometric analysis replaces these
Lagrange polynomials with splines which are also used in generating
the geometry. This implies that both geometry and finite element
analysis are based on spline functions and hence the name isogeo-
metric analysis. NURBS or Non-Uniform Rational B-splines is the most
widely used spline technology and this influenced its choice as a
starting point in the seminal work where isogeometric analysis was
proposed [38].

3.1. NURBS shape functions

A NURBS curve, ξT( ), is defined by a set of control points
PP = { } ∈a a

n d
=1  , a knot vector with increasing parametric coordinate

values ξ ξ ξΞ = { , ,…, }n p1 2 + +1 , and a set of rational basis functions
RR = { }a p

n
a
n

, =1 with p being the polynomial degree, and n the number
of basis functions:

∑ξ P R ξT( ) = ( )
a

n

a a p
=1

,
(7)

The individual coordinates of the knot vector are called knots which
are analogous to nodes in standard finite elements and the interval
between knots is a knot span. Unlike nodes, knots are usually not
interpolatory. If the first and last knots are repeated p + 1 times, the
knots become interpolatory, and the knot vector is said to be open. The
basis functions of a NURBS curve are expressed as:

R ξ
w B ξ

ξW
( ) =

( )
( )a p

a a p
,

,

(8)
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