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A B S T R A C T

This article presents an inverse method for predicting the reference geometry of plastically deformed material
body. The reference configuration is found by solving an elastic-plastic boundary value problem to determine an
inverse deformation that maps the spatial material points back to their reference positions. Rate-type
elastoplastic constitutive laws are employed in the inverse analysis. When the stress exceeds the yield limit,
the plastic flow is invoked and plastic variables are predicted. The ensuing stress field satisfies equilibrium and
yield condition. However, the loading history is replicated only approximately and therefore the reference
configuration is approximately recovered. The method is limited to a certain family of deformations. In this
work, we restrict the method to problems involving monotonic loading and moderately large deformations.
Numerical examples demonstrate that the method is effective and reasonably accurate for such problems.

1. Introduction

Finding the reference geometry of a finitely deforming material
body is of great interest to many engineering applications. For elastic
material, this problem has been well-studied. Yamada [1] and
Govindjee et al [2,3] pioneered an inverse method that directly solves
the equilibrium boundary value problem for the reference configura-
tion, and this approach has led to finite element implementations that
are similar to standard forward elements [2–8]. Structural inverse
problems have also been investigated [9–12]. Recently, the inverse
method finds applications in biomedical analysis to deal with problems
for which only deformed configurations are known at the onset
[13,10,14,6,15]. It was reported that, for some biological systems, the
inverse method also helps to address the issue of lack of information of
material properties [16,17].

Theoretically, elastoplastic deformations are history dependent and
thus the inverse problem is not well-posed. The inverse solution is not
unique unless the loading history or the plastic strain in the deformed
state is known. Nonetheless, there has been a strong practical interest
in the inverse elastoplastic problems. In the sheet metal forming
community, a large body of work has been devoted to determining
the initial blank geometry of workpieces based on a target final
geometry using inverse analysis [18–25]. The hallmark of these works
is to solve the equilibrium boundary value problem inversely to
determine the initial geometry. Early developments mostly employed

membrane theory to describe the mechanical behavior of thin metal
sheets and implemented a one-step scheme to obtain the solution
[20,19,26]. Bending effect was incorporated by using shell theory
[21,25] and three dimensional constitutive laws [27]. These works
mostly adopted the deformation theory of plasticity which assumes that
each material point undergoes proportional loading and the axes of the
strain are fixed. To better capture the history effect, multi-step schemes
which admitted the proportional loading assumption stepwise were
introduced [18,21,25]. Lately this inverse approach has been utilized in
forging applications [28].

The inverse formulation based on the deformation theory of
plasticity was found to give good strain estimation but poor stress
prediction. To improve the stress estimation a pseudo-inverse ap-
proach was developed by Guo et al [29–33]. In this approach,
geometrically realistic intermediate configurations were introduced.
The inverse method was used to adjust the intermediate configurations
succeedingly starting from the final configuration. The flow theory of
plasticity and also damage theory were utilized in the inverse update
process.

The contributions cited above demonstrated the usefulness of
inverse analysis in forming applications. However, since the deforma-
tion theory was adopted mostly, the material was treated algorithmi-
cally as elastic. Also, certain prior information about the shape of the
initial and/or intermediate configurations was incorporated in the
analysis and these conditions are pertinent only to forming or forging
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applications. It remains unclear how well an elastoplastic deformation
can be inversely predicted in a general setting. An attempt towards
solving inverse elastoplastic problem using the algorithmic framework
of [1,2] was reported in Germain et al. [34]. The authors demonstrated
that when the plastic variables are known a priori the inverse approach
can be used to recover the reference geometry. This finding under-
scored the fact the elastoplastic inverse problem is ill-posted. The
inverse solution is not unique unless the plastic variables, or alter-
natively the loading path, are given. In reality, the plastic variables are
unknown at the onset. To cope with this issue, the authors introduced a
recursive process [35,36] consisting of iterative loops of inverse and
forward analyses using the inverse computation to predict the refer-
ence geometry and the forward analysis to engage the plastic flow. In
each loop, an inverse step is carried out first, with plastic variables fixed
at their current value. This is followed by a forward step applied on the
predicted reference geometry to generate the plastic variables. In
essence, this is an operator-splitting scheme which splits the inverse
problem into two sub-problems: determining the reference geometry
and determining the plastic variables. The plastic flow is introduced in
the forward step to recover the loading path.

In this work, we explore a direct approach of inverse analysis for
elastoplastic materials governed by the flow theory of plasticity. The
given information is the current geometry, applied forces and materi-
al's constitutive law. The unknowns are the reference geometry and
plastic variables in the current state. We propose to use the elasto-
plastic constitutive law directly in the framework of [2,3]. When the
stress is found to exceed the yield limit, the plastic flow is invoked and
the plastic variables are predicted. The analysis will yield a reference
configuration and a set of plastic variables. The ensuing stress satisfy
equilibrium and yield condition. However, since the analysis starts with
the current geometry, the actual strain history is not replicated and
thus the analysis can only yield approximate solutions. The premise is,
if the inverse “loading path” is somehow close to the actual loading
history, the inverse solution is expected to be reasonably accurate. The
method, therefore, is not a general approach but limited to a certain
family of elastic-plastic deformations for which the strain history can
be reasonably replicated in the inverse process. Here, we focus on
problems involving monotonic loading and moderately large deforma-
tions. The rationale will be explained later.

The remainder of the article is organized as follows. To set the
stage, the inverse elastoplastic boundary value problem is briefly
described in Section 2. A finite element formulation is outlined in
Section 3. The formulation utilizes existing material models and
therefore only the element level computation is presented. Numerical
examples are presented in Section 4.

2. Inverse elastoplastic problem

We seek to find a reference configuration of a plastically deformed
material body based on the knowledge of (1) a deformed configuration
of the body, (2) the applied body force, (3) boundary conditions
including Cauchy traction data and displacement data, and (4) the
constitutive law of the material. As alluded earlier, the approach is to
determine the inverse deformation by solving the following boundary
value problem: find the inverse motion Φ Ω R: ↦ ∈ 3 such that
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Here σ is the Cauchy stress, bi is a component of the body force per unit
current volume, ti is a component of the prescribed boundary traction,
Ω is the given current configuration, and is the sought reference
configuration. The inverse deformation Φ tx( , ) is the kinematic inverse
of the forward deformation φ tX( , ) at any fixed time. The gradient

Φ tf x≔∂ ( , )x is the inverse of the forward deformation gradient
φ tF X≔∂ ( , )X . If, during the inverse solution process the stress is found

to exceed a given elastic limit, the problem cannot be treated as elastic.
An elastoplastic constitutive law is then invoked.

We focus on rate-independent plastic behavior described by the
finite strain elasto-plasticity theory presented in, e.g. [37–39]. This
theory treats an elastoplastic material as a family of elastic materials
parameterized by plastic variables. In particular, we will utilize
constitutive forms that take a metric-like plastic deformation tensor
Cp as a primitive plastic variable [40,41]. For the model employed later
in the simulation, the plastic variables include the tensor Cp and an
equivalent plastic strain, ep. At fixed plastic variables, the stress is
given by a (hyperelastic) function of Cauchy-Green deformation tensor
C and the plastic variables. The admissible stress lies in a (convex)
region in the stress space bounded by a yield surface. If the stress tends
to penetrate the yield surface, plastic flow is activated to bring the
stress back to the yield surface.

In the numerical solution the elastoplastic constitutive equation is
handled in essentially the same manner as in the forward analysis.
Given a predicted reference configuration at time step n + 1, the
deformation tensor is computed from

Φf C f f= ∂ , =n n n n
T
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−
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−1
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A trial stress Sn
Tr

+1 is computed using the strain Cn+1 and the current
plastic variables. If the trial stress satisfies the yield condition, then
S S=n n

Tr
+1 +1 and plastic variables remain intact. Otherwise, a return

mapping is performed to project the stress back and update the plastic
variables. Note that the plastic tensor Cp is a field variable defined in
the (iteratively determined) reference configuration and it predicted
along with the latter. The yield condition is enforced at every step and
hence the stress satisfies the yield condition at the end.

Although the treatment of elastoplastic response is algorithmically
the same as in the forward analysis, there is a fundamental difference:
the stain history (e.g. the loading path) is inferred from the inverse
deformation. In general, the inverse strain history cannot be the same
as the forward one, and thus, the actual loading path is not exactly
replicated. The difference in the strain history is the root cause for the
inverse solution to be approximate. A pre-requisite for the method to
work is that the inverse loading path remains somehow close to the
forward one. Under this circumstance, we expect that the predicted
reference configuration and plastic variables are reasonably accurate.
Below, we speculate some conditions for the loading paths to be close.
A rigorous error analysis is beyond the scope of this work.

1. Monotonicity of loading. We first require the loading to be mono-
tonic. To the leading order, the strain path in a monotonic loading is
a line between the starting and end points in the strain space. This
path depends largely on the end points, and thus is more likely to be
reproduced in the inverse process. Physically, since there is no
unloading or reverse plastic loading, the history influence is less
prominent. Note that although the monotonicity condition seems
restrictive, there is a wide range of practical problems that can fit
into this category. For example, most forming or casting processes
are essentially monotonic; the deformation increases continuously,
bearing little or no reversal loading.

2. Moderately large deformation. Another restriction is that the
deformation cannot be arbitrarily large. In elastoplastic analysis
the solution is typically obtained incrementally. In the inverse
approach, the predicted configuration at an intermediate step tn is
a partially recovered reference configuration, in contrast to a
partially deformed current configuration in the forward analysis.
The stress in the forward analysis satisfies equilibrium on the
partially deformed current configuration, whereas the stress in the
inverse analysis always achieves equilibrium on the given, full
current configuration. The intermediate stresses are different from
the equilibrium perspective. If the deformation is too large, the

J. Lu, L. Li Finite Elements in Analysis and Design 130 (2017) 1–11

2



Download English Version:

https://daneshyari.com/en/article/4966152

Download Persian Version:

https://daneshyari.com/article/4966152

Daneshyari.com

https://daneshyari.com/en/article/4966152
https://daneshyari.com/article/4966152
https://daneshyari.com

