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A B S T R A C T

In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the
commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational
principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 which connects broken and
unbroken regions. If its value reaches one the material is fully broken, thus both its stiffness and stress are
reduced to zero. The elastic displacement and the fracture problem are decoupled and solved separately as a
staggered solution.

The approach does not need predefined cracks and it can simulate curvilinear fracture paths, branching and
even crack coalescence. Several examples are provided to explain the advantages and disadvantages of the
method. The provided source codes and the tutorials make it easy for practicing engineers and scientists to
model diffuse crack propagation in a familiar computational environment.

1. Introduction

Fracture is one of the main failure modes for engineering materials.
However, most of the time design codes apply large safety factors to
avoid its manifestation. Additionally, to the devastating consequence of
a brittle failure, their evolution is difficult to study in practice.
Therefore, predicting the initiation and the propagation path of a
fracture is of great importance for practicing engineers and scientists.

The original theory to understand brittle crack evolution was
introduced first by Griffith [1], then a new metric, called the stress
intensity factor, was proposed by Irwin [2] to account for the micro-
scopic plasticity near the crack tip, even for macroscopically brittle
materials [3,4]. They considered crack propagation as a stability
problem: if the energy release rate reaches a critical value, the crack
is able to open. The original theory describes crack propagation
adequately, but it is insufficient to account for initiation, curvilinear
crack paths, benching or coalescence.

Nowadays several methods are available to model crack propaga-
tion in solids. These methods can be categorized into two major groups
depending on how they account for the supposed discontinuity:
discrete or diffuse. Using discrete methods, such as node splitting
[5], cohesive surfaces [6], hybrid discrete and finite element methods
[7], the crack can only propagate between elements, therefore its path
is strongly mesh dependent. This problem was overcome by the group

of Belytschko [8,9] using a local enrichment in the shape functions of a
finite elements (XFEM), as well as by Grüses and Miehe [10] with a
configurational-force-driven sharp fracture front.

The second group of fracture modeling assumes that the disconti-
nuity in the material is not sharp, but can be interpreted as a smeared
damage. This theory led to the development of the phase-field model
[11,12]. This way, the weakness of the original approach of Griffith can
be overcome by a variational approach based on energy minimization,
as proposed by several authors [13–17]. These approaches introduce a
regularized sharp crack taken into account by an auxiliary scalar
damage variable. This variable is considered as a phase-field establish-
ing the connection between intact and broken materials.

Over almost a decade this method has gained significant visibility
due to its flexible implementation. Besides the work of Msekh et al.
[18], mostly in-house softwares were developed to model fracture with
phase-fields. Unfortunately, the aforementioned paper neglects to
reproduce the results of most of the previous implementations [12],
and its source code is not available.

In this paper we give a fully functional implementation as an
Abaqus/Standard UEL [19] of the phase-field model [20] to study the
quasi-static evolution of brittle fracture in elastic solids. Additionally,
as a Supplementary material the source code for the UEL and several
examples are provided. Our purpose is to make the diffuse crack
propagation scheme widely available not only for numerical scientists,
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but for practical applications and design engineers as well.
Furthermore, the provided source codes can be easily developed to

account for dynamical effects [21], large deformations [22], path-
following [23] or multi-physics problems [24,25]. One of the major
advantage of present implementation, is that no additional updates and
softwares are necessary, but only the widely available Abaqus/Standard
[19] package and a FORTRAN compiler. It can fit into any existing
platform and can be parallelized easily.

The quasi-static simulation of brittle fracture phase-field problem is
solved using a staggered algorithm [20]. This approach decouples the
elastic and the fracture problem. The strategy has proven to been
computationally efficient and extremely robust. However, to reach an
accurate solution the step size should be chosen carefully.

Our results compare favorably with the originally developed algo-
rithm [20], as well as with other methods. We provide several examples
both with the Abaqus input and FORTRAN files for better under-
standing and further development. The implementation contains 2D
plane strain and 3D cases as well.

The paper is structured as follows. In Section 2 the difference
between sharp and diffuse (phase-field) crack is explained. Then the
coupling between the elastic solution and the phase-field problem is
unfolded. Finally the staggered solution and its finite element imple-
mentation are given. Section 3 gives numerous examples and bench-
mark tests to validate and understand the simulation process. We also
highlight the effect of most of the numerical parameters, such as the
time step, length scale parameter or even mesh density. Finally in
Appendix B a detailed description is given to guide the users in the
development of their own models.

2. Methods

2.1. Phase field approximation of diffuse crack topology

To introduce the concept of a diffuse crack topology, let us consider
an infinite one directional bar aligned along the x axis with a cross
section Γ (see Fig. 1a). Let us assume a fully opened crack at x=0. If
function d(x) describes the damage, a sharp crack shown in Fig. 1b is a
Dirac delta function. Its value is zero everywhere except at x=0, where

d (0) = 1. Variable d(x) is the crack phase-field function. If its value is
zero, the material in unbroken, if its value reaches 1, it is fully broken.

Following the idea that the crack itself is not a discrete phenom-
enon, but initiates with micro-cracks and nano-voids, we introduce an
exponential function to approximate the non-smooth crack topology:

d x e( ) = ,x l− / c (1)

where lc is the length scale parameter and d(x) represents the
regularized or diffuse crack topology. Basically, with this idea the
sharp crack is diffused as shown in Fig. 1c. By l → 0c the sharp case is
recovered. Function (1) has the property d (0) = 1 and at the limits
d ( ± ∞) = 0.

It is the solution for the homogeneous differential equation [12]:

d x l d x Ω( ) − ″( ) = 0 in ,c
2 (2)

subject to the Dirichlet-type boundary condition shown above. The
variational principle of strong form (2) can be written as:
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and W d d d= { | (0) = 0, ( ± ∞) = 0}. Now observe that the integration
over volume dV Γdx= gives I d e l Γ( = ) =x l

c
− / c . Thus, the fracture

surface is related to the crack length parameter. As a consequence,
we may introduce a fracture surface density with the help of the phase-
field function by:
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where γ d d( , ′) is the crack surface density function in 1D. Similarly, in
multiple dimensions it can be expressed as:
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2

+
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∇ .
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c2 2
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It can be seen that the gradient of the phase-field plays a significant
role in the description.

2.2. Strain energy degradation in the fracturing solid

To couple the fracture phase-field with the deformation problem,
we can write the potential energy of a solid body as:

Π E d W du= ( , ) + ( ),int (7)

where E du( , ) is the strain andW d( ) is the fracture energy. Let Ω ⊂ δ,
be the reference configuration of a material body with dimension
δ ∈ [1 − 3], and Ω∂ ⊂ δ−1 its surface. The crack and the displacement
field is studied in the range of time T ⊂ . Consequently we can
introduce the time dependent crack phase-field:

⎧⎨⎩d Ω T
t d tx x: × → [0, 1]

( , ) → ( , ). (8)

and the displacement field:

⎧⎨⎩
Ω T

t tu x u x: × →
( , ) → ( , ).

δ

(9)

In Eq. (7), the internal potential can be written:

∫ εE d ψ d dVu u( , ) = ( ( ), ) ,
Ω (10)

where εψ d( , ) is the potential energy density:

ε εψ d g d ψ( , ) = ( )· ( ).0 (11)

εψ ( )0 is the elastic strain energy and g d( ) is a parabolic degradation

Fig. 1. (a) 1D bar with a crack at the middle with the cross section Γ. (b) Phase-field for
sharp crack at x=0. (c) Diffuse crack at x=0 modeled with function (1) and length scale
parameter lc.
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