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A B S T R A C T

This paper presents an energy-momentum method for three dynamic co-rotational formulations of shear
flexible 2D beams. The classical midpoint rule is applied for both kinematic and strain quantities. Although the
idea as such was developed in previous work, its realization and testing in the context of co-rotational
Timoshenko 2D beam elements is done here for the first time. The main interest of the method is that the total
energy and momenta are conserved. The three proposed formulations are based on the same co-rotational
framework but they differ in the assumptions done to derive the local formulations. Four numerical applications
are used to assess the accuracy and efficiency of each formulation. In particularly, the conservation of energy
with a very large number of steps and the possibility to simplify the tangent dynamic matrix are investigated.

1. Introduction

Flexible beams are used in many applications, for instance large
deployable space structures, aircrafts, wind turbines propellers and
offshore platforms. These structures undergo large displacements and
rotations, but still with small deformations. The simulation of their
nonlinear dynamic behaviour is usually performed using beam finite
elements. The co-rotational method is a very attractive approach to
derive highly nonlinear beam elements [1–18]. The fundamental idea
is to decompose the motion of the element into rigid body and pure
deformational parts through the use of a local system which continu-
ously rotates and translates with the element. The deformational
response is captured at the level of the local reference frame, whereas
the geometric non-linearity induced by the large rigid-body motion, is
incorporated in the transformation matrices relating local and global
quantities. The main interest is that the pure deformational parts can
be assumed small and can be represented by a linear or a low order
nonlinear theory [19–28].

One important issue in the co-rotational method is the choice of the
local formulation. Whereas the Euler-Bernoulli beam theory is com-
pletely sufficient for the applications of slender beams, the Timoshenko
beam theory takes into account shear deformation, making it suitable
for describing the behaviour of short beams, composite beams, or
beams subject to high-frequency excitation. The classical and simplest
Timoshenko local element is obtained by using linear shape functions,

a linear strain-displacement relation and a reduced integration [29–
31]. However, such a formulation requires a large number of elements
in order to obtain accurate results. Several alternatives for the local
part are possible in order to obtain a more efficient element: a mixed
approach in which the displacements and the stress are interpolated
independently [32–35], an enhanced strain formulation [36–39] or the
Interdependent Interpolation element (IIE) [40].

Regarding the inertia terms in the co-rotational context, Crisfield
et al. [2,10] used linear local interpolations although they took local
cubic interpolations to derive the elastic terms. Then, the inertia terms
are easily derived and the classical constant Timoshenko mass matrix is
obtained. However, Le at al. [4] adopted the IIE formulation [40], and
hence cubic shape functions, to derive both the inertia and elastic
terms. This leads to a formulation that requires a less number of
elements but also to more complicated expressions for the inertia force
vector and tangent dynamic matrix. The formulation was then ex-
tended to 3D beams without [11,12] and with [13] warping.

Another important issue in the context of non-linear dynamics is
the choice of the time stepping method. In commercial finite element
programs, the Alpha method [41] is usually used. However, this
approach introduces numerical dissipations and consequently, the
energy in the system is not conserved [42,43]. In the last decades, it
has been recognized that energy conservation is a key for the stability of
time-stepping algorithms in dynamics of solids and structures. Simo
and Tarnow [42] were the first authors to design energy-momentum
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algorithms that inherit the conservation of momenta and energy for
geometrically nonlinear problem involving quadratic Green- Lagrange
strains. Since then, much effort was devoted to develop energy-
momentum methods for various types of formulations such as non-
linear rod dynamics [44–48], nonlinear shell dynamics [49–54],
hypoelastic continuum [55,56] and elastodynamics [56–58]. With the
same objective of conserving energy and momenta, Bathe [59] pro-
posed a simple composite time stepping scheme when large deforma-
tions and long-time durations are considered.

In the co-rotational context, there have been some efforts to
develop energy-momentum methods as well. Crisfield and Shi [1]
proposed a mid-point energy-conserving time algorithm for two-
dimensional truss elements. This concept was further developed by
Galvanetto and Crisfield [3] for planar beam structures. Various end-
and mid-point time integration schemes for the nonlinear dynamic
analysis of 3D co-rotational beams are discussed in [10]. The authors
concluded that the proposed mid-point scheme can be considered as an
“approximately energy conserving algorithm”. A similar approach was
applied to the dynamic of co-rotational shells [16], laminated compo-
site shells [17] and thin-shell structures [18]. Salomon et al. [14]
showed the conservation of energy and momenta in the 2D and 3D
analyses for the simulation of elastodynamic problems. They men-
tioned that, for some cases, the angular momentum is asymptotically
preserved and an a priori estimate is obtained. However, despite of all
these works, the design of an effective time integration scheme for co-
rotational elements that inherently fulfils the conservation properties
of energy and momenta is still an open question.

In this paper, a new energy-momentum method in the context of
co-rotational shear flexible 2D beam elements is proposed. Based on
the previous works of Sansour et al. [50,52], the main idea is to apply
the midpoint rule not only to nodal displacements, velocities and
accelerations but also to the strain fields. It means that the strains are
updated by using the strain velocities instead of using directly the
strain-displacement relation. The conservation of energy, linear and
angular momentum is proved theoretically and also observed in the
numerical applications.

Based on the same co-rotational framework, three different local
formulations are implemented and tested for a large number of time
steps. The respective shape functions and strain assumptions for each
local formulation are presented in Table 1. The reduced integration
method (RIE) is the classical Timoshenko approach based on linear
interpolations and one Gauss point integration for the static terms. The
mixed formulation (MX) is also based on linear interpolations but a
mixed approach is used to derive the static terms. For IIE formulation,
the IIE cubic shape functions [40] are used and a nonlinear shallow
arch strain definition is adopted. For this last element, the expression
of the tangent dynamic matrix is complicated and a possible simplifica-
tion is carefully studied. For the three formulations, different pre-
dictors are tested.

The paper is organized as follows: the beam kinematics is presented
in Section 2. In Section 3, Hamilton's principle and conserving
properties are presented. In Section 4, the energy-momentum method
is developed. The inertia and elastic terms are derived respectively in
Sections 5 and 6. In Section 7, the equation of motion for all
formulations is presented along with the choice of predictors and the
algorithm. The proofs of the conservation of energy, linear and angular
momenta are given in Section 8. In Section 9, four numerical

applications are presented in order to assess the numerical perfor-
mances of the proposed formulations. Finally, conclusions are pre-
sented in Section 10.

2. Beam kinematics

The kinematics of the beam and all the notations used in this
section are shown in Fig. 1. The motion of the element is decomposed
in two parts. In a first step, a rigid body motion is defined by the global
translation (u1,w1) of the node 1 as well as the rigid rotation α. This
rigid motion defines a local coordinate system (xl, zl) which continu-
ously translates and rotates with the element. In a second step, the
element deformation is defined in the local coordinate system.
Assuming that the length of the element is properly selected, the
deformational part of the motion is always small relative to the local co-
ordinate systems. Consequently, the local deformations can be ex-
pressed in a simplified manner.

The vectors of global and local displacements are defined by

q u w θ u w θ= [ ]1 1 1 2 2 2
T (1)

and

q u θ θ= [ ]1 2
T

(2)

Explicitly, the components of q are given by
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where l0 and l denote the initial and current lengths of the element,
respectively:
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The current angle of the local system with respect to the global system
is denoted as β and is given by

c β
l

x u x u

s β
l
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= cos = 1 ( + − − )
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2 2 1 1
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The differentiation of the expressions (3) gives

q qδ δB= (6)

with

Table 1
Formulations.

Formulations Shape function Static term

RIE Linear Linear strain with reduced integration
MX Linear Linear strain with mixed formulation
IIE Cubic Shallow arch strain

Fig. 1. Beam kinematics.
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