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A B S T R A C T

The present work deals with the simulation of the flow in Discrete Fracture Networks (DFN), using the mixed
formulation of the Virtual Element Method (VEM) on polygonal conforming meshes. The flexibility of the VEM
in handling polygonal meshes is used to easily generate a conforming mesh even in the case of intricate DFNs.
Mixed Virtual Elements of arbitrary polynomial accuracy are then used for the discretization of the velocity field.
The well posedness of the resulting discrete problem is shown. Numerical results on simple problems are
proposed to show convergence properties of the method with respect to known analytic solutions, whereas some
tests on fairly complex networks are also reported showing its applicability and effectiveness.

1. Introduction

Effective flow simulations in underground fractured media are
strategic in several practical contexts: protection of water resources,
geothermal applications, Oil & Gas enhanced production and geological
waste storage. All these applications share two possibly conflicting
common characteristics: a high accuracy and reliability is required,
whereas the uncertainty on the geometry and on the data demands for
a huge number of simulations in order to provide probability distribu-
tions of the target quantities.

This work considers the problem of simulating the hydraulic head
distribution in the subsoil, modeled as a Discrete Fracture Network
(DFN) [1–6], which is a randomly generated set of intersecting planar
polygons resembling the fractures in a surrounding porous medium.
DFNs are usually characterized by enormous geometrical complexities
and by the presence of a large number of fractures forming an intricate
network of intersections. Many novel numerical approaches have been
recently developed, in order to circumvent problems arising in efficient
flow simulations in realistic DFNs. One of the main difficulties consists
in the meshing process, since conventional approaches rely on the
conformity of the mesh at fracture intersections in order to enforce
suitable matching conditions. The generation of a mesh conforming to

fracture intersections might have a high computational cost, or even
fail, as a consequence of the number of geometrical constraints, and
could result in poor quality triangulations for the presence of distorted
elements. Furthermore, as already mentioned, input data for DFN
simulations are derived from probability distribution of soil properties,
thus requiring a large number of costly simulation to derive reliable
statistics on the quantity of interest.

Recently, a novel code for the simulation of the flow in DFNs with
stochastic input data was proposed in [7–9]. In [10,11] the complexity
of DFN flow simulations is tackled resorting to dimensional reduction
of the problem, removing the unknowns in the interior of the fractures
and rewriting the problems at the interfaces. In [12,13] the authors use
the eXtended Finite Element Method (XFEM) in order to allow for the
presence of interfaces in the domain not conforming to the mesh. The
XFEM is also used in [14,15]. In [16–20] the authors suggest the use of
an optimization-based approach on non-conforming meshes to avoid
any problem related to the generation of the mesh. The proposed
optimization approach also provides a scalable resolution algorithm
[21], and is used in conjunction with different discretization choices,
ranging from standard finite elements, to the XFEM, [22,23], or to the
new virtual element method [24]. Recently, techniques as the Mimetic
Finite Difference method (MFD, [25,26]) have been used for flow
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simulations in DFNs, by [27,28], as an example, and also the new
Virtual Element Method (VEM, [29–34]) was proposed, in addition to
the already mentioned reference [24], also in [35,36]. In these last two
works, in particular, the authors take advantage of the flexibility of
virtual elements to easily generate a polygonal mesh of the fracture
network that satisfies certain conformity requirements with fracture
intersections.

The use of mixed formulation in DFN simulations is a widely
common choice, for the possibility of a direct computation of the Darcy
velocity; see among others [37,12,38–42,27,28]. This improves the
accuracy for simulations in which the velocity is to be used as the
transport field of an advection-diffusion process of a passive scalar, as
in the case of the evolution of the concentration of a pollutant in the
subsoil.

In the present work, the framework proposed in [35] is extended to
the use of Mixed Virtual Elements, thus combining the reliable
meshing process used therein to the mentioned advantages of the
mixed formulation. The continuous advection-diffusion-reaction pro-
blem in a DFN is presented in mixed form, introducing suitable
matching conditions at fracture intersections for the pressure and
velocity fields. The discrete formulation with Mixed Virtual Elements of
arbitrary polynomial accuracy is then derived, and a proof of well
posedness is also provided. Numerical results on simple DFN config-
urations are first proposed, showing convergence rates of the numerical
solution to the known exact solutions. Polynomial accuracy values
ranging from k = 0 to k = 5 are considered. Afterwards, other numer-
ical tests are shown on increasingly complex networks, in order to
highlight the viability and the effectiveness of the method in dealing
with realistic DFN configurations.

The presentation follows this outline: in Section 2 we describe the
domain of interest, establish some notations and write the continuous
model that describes the hydraulic head distribution within the DFN.
In Section 3 the discrete formulation of the problem based on the
mixed VEMs on each fracture is discussed and suitable coupling
conditions at intersections are introduced. Well posedness of the
discrete problem is shown. Some notes on the implementation are
given in Section 4. Finally, in Section 5 validation tests are shown on
advection-diffusion-reaction problems written on simple domains,
together with an analysis of the performances of the method in solving
pure diffusion problems on realistic DFNs.

We use the notation ∥·∥k ω, to indicate the ωH ( )k -norm of vectors or

scalar functions, on some set ω ⊂ 2 . In the case of a vector v vv = ( , )1 2 ,
we intend, e.g., ∫ v x y v x y x yv∥ = ∥ ( ( , ) + ( , ) )d dω ω0,
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2 . Moreover, the

symbol v n· σ σ denotes the jump v n v n( · ) − ( · )σ σ
+ − across a segment σ,

being nσ
+, nσ

− the unit normal vectors to σ with opposite directions. We
have that nσ is the unit normal vector to σ with one fixed orientation,
and we observe that the definition of the jump is independent from the
choice of nσ .

2. The continuous problem

The geometrical setting for the problem of interest is a Discrete
Fracture Network Ω, that is a finite set of planar polygonal fractures
intersecting in the 3D space. Each fracture in Ω is denoted by Fi, for
some index i N= {1,…, } = , whereas intersections between fractures
are called traces and indicated by Γℓ, for Lℓ={1,…, } = . We assume,
for simplicity, that each intersection occurs between exactly two
fractures, and we define, for each ℓ ∈ , i j= ( , )ℓ , with i j< , as the
ordered couple of indices of those fractures meeting at Γℓ, i.e.
Γ F F= ∩i jℓ . For each fracture Fi, i is the set of indices of those traces
that Fi shares with other fractures.

The boundary of Ω, Ω∂ is split in a Dirichlet part Γ ≠ ∅D and a
Neumann part ΓN with Ω Γ Γ∂ = ∪D N and Γ Γ∩ = ∅D N . Let us denote by
h the hydraulic head in Ω and by hi its restriction to Fi for i ∈ . Let
further Fi be subdivided in a set of sub-domains Fi j, , j N∈ {1,…, }i , such

that the traces lying on Fi are now part of the boundary of some of these
sub-domains. Then, the hydraulic head h in Ω is the solution of the
following system of equations, which, for i ∈ and j N∈ {1,…, }i reads
as:

h h γh f F
h h Γ F
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where Ki is a uniformly positive definite tensor expressing the
transmissivity of fracture Fi, whereas F∂ i j, is the boundary of Fi j, , and
F∂ i is the boundary of Fi which is split in a Dirichlet part Γ Γ F= ∩ ∂Di D i
on which the value hDi is prescribed and a Neumann part Γ Γ F= ∩ ∂Ni N i .
Across ΓNi a total (diffusive and advective) flux is imposed equal to hNi.
Finally ΓNi

n is the outward unit normal vector to the Neumann
boundary.

Problems on the fractures are coupled together by natural matching
conditions expressing the continuity of h at traces and the balance of
fluxes: for all ℓ ∈ , if i j= ( , )ℓ ,

h h− = 0,i Γ j Γℓ ℓ (2)
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where nΓ
i
ℓ
is the unit normal vector to Γℓ with a fixed orientation on Fi.

In order to introduce the variational formulation of problem (1), let
us set the following functional spaces: for i ∈ and j N= 1,…, i,
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endowed with the following natural norms:
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in which v∥ ∥ ωℓ, denotes, as usual, the norm of function v in ωH ( )ℓ .

By defining ν :=Ki i
−1, β b:=Ki i i

−1 , i∀ ∈ , and introducing, on each
fracture Fi, i ∈ the new variables h hu b:= − K ∇ +i i i i i and for each
ℓ ∈ formally defining λ h= Γℓ ℓ

, we can recast (1) in the following
dual variational form:

Find u u u= + N0 , with u ∈0 , h ∈  and λ ∈  such that
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