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A B S T R A C T

An alternative solid finite element formulation for large deformation analysis of viscoelastic materials is
proposed. This new approach is based on positions and makes possible a robust implementation of an
isoparametric solid tetrahedral that presents no locking when dealing with complex stress, strain and strain rate
for general structural analysis. A consistent way to write internal variables that accounts for finite viscoelastic
strains is proposed. In this alternative methodology the neo-Hookean hyperelastic law is taken into account
together with the Zener viscoelastic model. The evolution law is described in terms of a rate equation involving
the viscous right Cauchy-Green stretch tensor. The study is dedicated to homogeneous materials under
isothermal and quasi-static conditions. The nonlinear solution procedure is performed via the Newton-Raphson
iterative technique and the backward-Euler method.

Four illustrative examples involving large viscoelastic strains are analyzed: uniaxial tension, simple shear,
buckling of a clamped column and partially loaded block. The present formulation can reproduce creep, stress
relaxation and viscoelastic rate dependent stiffening at large strains, which are usually observed in polymeric
materials. Even for very complex stress, strain and strain rates the mesh refinement of the proposed
methodology leads to more accurate results, avoiding general locking problems. The effect of the viscosity
parameter on the material response and the evolution of viscous stretches over time are also highlighted in the
results.

1. Introduction

Viscoelastic materials have many practical applications in engineer-
ing, especially in polymeric structural components. These materials
have the ability to creep, undergo stress relaxation and absorb energy.
So, their main structural functions are impact absorption, noise
reduction, damping system and vibration isolation. Several applica-
tions of viscoelastic polymeric materials can be cited: polymer foams
used in seat cushions, helicopter acoustic blankets, automobile bum-
pers, shoe insoles, steel/polymer composite for damping systems,
wrestling mats, foam padding inside helmets, among many others.
The prediction of the mechanical behavior of these materials is,
therefore, essential for design purposes.

The main difficulty arisen from the analysis of polymeric materials
is that they usually present time-dependent highly nonlinear deforma-
tion in finite strain regime. In other words, polymers (or elastomers)
are highly deformable and viscoelastic and usual problems regarding

FEM implementation, as locking and mesh dependence, may be
present. The finite elastic strains are usually treated in the context of
hyperelasticity (see, for instance, [1]), and the time-dependence of the
mechanical material response is described via viscoelastic models.
Many viscoelastic formulations have been proposed in the scientific
literature, including the small strain models and their corresponding
extension to the finite strain regime. However, there is not a general
finite viscoelasticity framework. The most common theoretical formu-
lations, in its majority not implemented in finite elements, may be
classified into three groups: Convolution Integral Model (CIM);
Internal Variable Model with Linear Evolution Equation (IVM1); and
Internal Variable Model with Nonlinear Evolution Equation (IVM2).

The first group (CIM) corresponds to the models in which the
material viscoelastic response is described by convolution or hereditary
integrals. According to [2], these models are related to the expansion
theory of [3] and the extension of the Boltzmann superposition
principle to finite strain regime has been performed by [4]. The strain
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(or the deformation gradient) is locally decomposed into a part that
defines the deformation from time -∞ to τ, and a part that defines the
deformation from τ to the actual time t. The stress is obtained by
summing long-term low strain rate response (instantaneous elastic
part) and the viscous overstress expressed in terms of time convolution
integrals accounting for the material history [2].

The other two viscoelasticity frameworks (IVM1 and IVM2) are
based on the original work of [5] and on the studies of [6] and [7]. The
key idea of the internal variable models are the use of hidden (or
internal) strain history variables, which cannot be observed or mea-
sured. The material response is defined by the total strain and the
history variables, and the second law of thermodynamics (described by
the Clausius-Planck inequality) is employed to set the internal dissipa-
tion and the stress-strain relation. The differences between these
formulations are the history measure and the evolution equation
employed. In the model IVM1, the evolution equation is set by a linear
rate equation regarding the non-equilibrium stresses (or overstresses),
which has a closed-form solution in convolution form and leads to a
simple recursive update formula (see, for instance, the works of [8] and
[9]). The strain decomposition into an elastic and a viscous parts is
adopted only in the third model (IVM2), in which the evolution
equation is defined by a rate equation involving the elastic left
Cauchy-Green tensor (see, for example, [2] and [10–12]) or the viscous
right Cauchy-Green tensor (see [13] and [14], for instance). A
comparison of the models – regarding the large-strain viscoelastic
response of polymers, thermodynamic consistence and numerical
aspects – is provided in the study of [2], which concluded that the
models differ for moderate strain rates and it is very difficult to
determine which model must be preferred for specific applications.
In the present study, the authors present a finite viscoelastic model,
called visco-hyperelasticity, similar to the IVM2 formulation adapted to
be used in a finite element environment. To develop our Finite Element
Formulation we adapted the thermal-viscoelastic model for rubber-like
materials proposed in [15], using a Helmholtz free energy function that
neglects thermal effects.

Knowing the good performance of the fully integrated isoparametric
solid tetrahedral finite elements of any-order proposed for finite
elasticity by [16], we originally adapted the theoretical visco-hyper-
elastic model of [15] to develop a computer code for the analysis of
highly deformable viscoelastic materials avoiding locking and mesh
dependence for complex viscoelastic stress, strain and strain rate fields.
There are several large-strain viscoelastic analyzes via finite elements
in the scientific literature, but the use of solid elements are still limited
and there is not the combination of the tetrahedral finite element and
the proposed visco-hyperelastic model. For example, in the work of
[17], 20-node solid and shell elements are employed to analyze
traveling load problems in rolling, moving and rotating viscoelastic
structures, and a contact algorithm is used to simulate a 15,000 degree-
of-freedom model of a tire. This 20-node solid element is also used in
[18] to analyze viscoelastic large deformation problems with a con-
volution model and to discuss the effects of material incompressibility
on stress analysis. In the study of [8], an internal variable model
together with assumed enhanced strain elements based on a three-field
variational formulation is adopted, showing that the formulation can be
used to reproduce creeping and relaxation phenomena for near-
incompressible materials. A nonlinear viscoelastic response of rein-
forced elastomers is modeled in [13] using a 3D mixed finite element
method with a nonlocal pressure field, and the resultant formulation
can be used to simulate a solid propellant unit cell, as well as capture
creep and relaxation phenomena. Second-order solid finite elements
are employed in [12] to study viscoelastic and viscoplastic problems. A
viscoelastic internal variable model based on logarithmic strain has
been implemented by [14] into a user-defined subroutine in the

nonlinear finite element software ABAQUS, using solid elements and
showing good agreement with experimental data. As far as the authors'
knowledge goes, there are no studies regarding large deformation
analysis of viscoelastic materials via fully integrated solid tetrahedral
finite elements, and no convergence analysis is performed for the
existent formulations. By our experience the lack of convergence
studies may be associated with locking and mesh dependence phenom-
ena that are not present in the element proposed by [16] and [19], to be
employed here.

The integration of the evolution equations, which is the update of
the time-dependent variables, is an important issue concerning the
viscoelastic models in numerical or finite element analyzes. The two
most common time integration schemes are the backward-Euler and
the exponential mapping schemes. The latter method, also used in
elastoplasticity, guarantees viscous incompressibility, which is valid for
many polymers, and allows larger time step sizes, but is very difficult to
be implemented in a computer code for 3D formulations. Thus, the
backward-Euler method has been adopted in the present study.

The purpose of the present study is to present an accurate and
reliable numerical formulation, via solid tetrahedral finite elements, for
the analysis of viscoelastic materials under finite deformations, finite
strains, isothermal conditions and statically applied forces. In future
works, it is intended to include the thermal dependence of the
constitutive model due to its importance in polymer and some metal
analyses.

The paper is organized as follows. The constitutive visco-hyper-
elastic model, written in a proper way to the numerical implementa-
tions, is described in the second section. The finite element approx-
imation, including its positional aspect, is provided in Section 3. The
numerical algorithm, as well as the time integration scheme, revealing
the elegance of the proposed numerical strategy in aggregate new
constitutive models, is given in the fourth section. The illustrative
numerical examples are showed and discussed in Section 5, including
simple and complex stress, strain and strain rate fields. Finally, the
main conclusions are highlighted in the sixth section.

2. Visco-hyperelastic model

The finite viscoelasticity model described in the present section is
based on the works of [10,13–15] and [20].

2.1. Deformation and strain

The deformation gradient, denoted by F, is multiplicatively decom-
posed into an elastic and a viscous part, similarly to the Kröner-Lee
decomposition employed in finite plasticity:

F F F= e v (1)

where the subscripts ()e and ()p denote, respectively, the elastic and the
plastic parts. This decomposition in questionable in viscoelasticity
according to [2], as the intermediate configuration defined by Fv can be
considered an equilibrium configuration only if the time scale is much
smaller than the relaxation time. This gradient tends to relax to the
reference configuration as the time scale evolves, becoming elastic.
Formulations in which decomposition (1) is adopted should then be
used for quasi-static problems, as pointed out by [2].

Three more Lagrangian strain measures are decomposed in the
present work based on (1):

C F F F C F C F CF= = ⇒ =T
v
T

e v e v
T

v
− −1 (2)
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