
Contents lists available at ScienceDirect

Finite Elements in Analysis and Design

journal homepage: www.elsevier.com/locate/finel

Local multiaxial fatigue damage estimation for structures under random
vibrations

A. Yaicha,b,⁎, A. El Hamia, L. Walhab, M. Haddarb

a Laboratory of Optimization and Reliability in Structural Mechanic, INSA Rouen, 76801 Saint Etienne du Rouvray, France
b Laboratory of Mechanics Modelling and Production, ENI Sfax, route Soukra, 3038 Sfax, Tunisia

A R T I C L E I N F O

Keywords:
Random vibrations
Multiaxial fatigue damage
Sines criterion
Power spectral density

A B S T R A C T

Many structures are subjected to random vibrations and those vibrations can cause a fatigue damage. So, to
estimate the live time of the structure, we need to applied the fatigue multiaxial criteria at each point. Many
studies demonstrate that the Sines criterion seems to give the best evaluation of the fatigue damage. But the
application of this criterion need a high computing time if it's evaluated in the time domain. In this paper, we
present a new methodology of calculation of the Local multiaxial fatigue damage, based on the formulation of
the Sines criterion developed in the frequency domain. Each parameter of the Sines criterion will be calculated
from the Power Spectral Densities of the stresses at each point of the structure. A finite element example is then
used, at the end of this paper, to illustrate the application of the proposed strategy of calculation of the fatigue
damage.

1. Introduction

In the last few decade, many studies have been elaborated, in order
to estimate the life time of a structure which is subject to random
vibrations. For multiaxial fatigue case, there are many criteria that
calculate the fatigue damage. Such a criterion can be mathematically
represented by:

g S t( ( ), T) ≤ 1i j, (1)

Where S t( )i j, is the stress tensor at any given location in the structure
and for any time t T∈[0, ]. A fatigue crack can appear if the inequality (1)
is not satisfied at any point of the structure.

In order to minimize the computing time, the fatigue damage
analyses will be done in the frequency domain. This can be seen in
many works such as Pitoiset [1,2] which defined a formulation of
Matake's criterion and Crossland's criterion in frequency domain.
According to Weber et al. [3] and Wu et al. [4], the Sines criterion
seems to give the best evaluation of damage subject to random stresses.
Then, a formulation of Sines criterion in the frequency domain will be
defined.

Let's consider a linear structure subject to stationary ergodic
Gaussian loads. According to Pitoiset [5], the crack will not initiate
before a certain number of repetitions, Ne, of the periodic random load
of duration, T, if the average of the damage does not exceed the fatigue
limit.

E g S t[ ( ( ),T)] ≤ 1i j, (2)

Then, to calculate the average of the damage in the frequency
domain, we need to calculate the Power Spectral Densities (PSD) of the
stresses for all point in the structure.

Also, there are several studies in reliability and optimization for
structures under random vibrations taking into account the fatigue
damage [6–11].

In the following sections, the damage calculation methodology in
the frequency domain by the Sines criterion is presented and discussed.
This methodology will be applied next on the same example treated by
Pitoiset [2]. Whereas, he used the Matake's criterion and crossland's
criterion on a simple steel to determine the fatigue damage. This
example will allow us to show the advantage of the Sines criterion in
the frequency domain for treating complex structures.

2. Random vibration

2.1. Random process

A random vibration is a motion which is non-deterministic. It's
mean that future behavior cannot be precisely predicted. Let's suppose
that we record a parameter characterizing a physical phenomenon n
times. The set of all these functions {f (t)} is called random process. We
can calculate for this process the mean value (Eq. (3)), the variance
(Eq. (4)), the autocorrelation function (Eq. (5)) and the covariance
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Matrix (Eq. (6)).

∫E f t f t p f t df[ ( )] = ( ). ( ( ))1

−∞

+∞

1 1
(3)

with p f t( ( ))1 is the probability density of f t( ).

σ E f E f= [ ]−( [ ])f
2 2 2 (4)

R t t τ E f t f t τ( , + ) = [( ( )). ( ( + )) ]f
T

1 1 1 1 (5)

t t τ E f t f t f t τ f t τΣ ( , + ) = [( ( )− ( ) ). ( ( + ) − ( + )) ]f
T

1 1 1 1 1 1 (6)

It's called a Gaussian stationary ergodic process if all its statistical
properties are invariable with time and if its overall statistical proper-
ties are equal to the temporal properties of any taken sample.

2.2. Power spectral density

The power spectral density is the Fourier transformation of the
autocorrelation function (Wiener-Kintchine theorem). The Eq. (7)
presents the PSD of a signal f(t)

∫f R τ e dτΦ ( ) = ( ) j πfτ
f

−∞

+∞

ℓ
− 2

(7)

The PSD determines the distribution of the process energy in the
frequency domain. Then, we can characterize a random vibration by its
PSD.

If the process f(t) has units of meters, and the frequency f (the
independent variable) has units of Hz then the units of the PSD is m²/
Hz. Alternatively, if the angular frequency ω πf=2 is the independent
variable, then the units of the PSD is m²/(rad/s). So, to convert
between frequencies f and ω, the value of the PSD needs to be scaled as
well [12]:

ω dω π f dfΦ ( ) = 2 Φ ( )ℓ ℓ (8)

2.3. Statistic proprieties of Gaussian random process

A spectral moment of a random process is defined by:

∫m f f df= Φ ( )i
i

−∞

+∞
ℓ (9)

These moments contain important information about the process.
They allow to evaluate many characteristics of the process such as the
variances of this process and its derivatives.

From the spectral moments calculated previously, an analytical
formulation can be developed to study the statistical properties of
random Gaussian processes such that the average number of passage
through a level b with a positive slope:

N m
m

e=b
b
m2

0

− 2 0
(10)

It can be deduced from Eq. (10) the number of up-crossings of level
zero (Eq. (11)) and the average of the number of maxima (Eq. (12))
[13].

N m
m

=0
2

0 (11)

N m
m

=p
4

2 (12)

2.4. Response of a linear system under random vibration

Let's suppose that f (t) is the input signal of a linear system, g (τ) is
the impulsion response, and u (t) is the output signal.

We can calculate for this system the mean value E[s(t)] (Eq. (13))
and the PSD Φs (Eq. (14)) of the Stresses. Thus, the stresses PSD is
calculated from the excitation input PSD Φf . [14]

E s t HBK E f t[ ( )] = [ ( )]−1 (13)

ω HB G ω ω B HΦ ( ) = ( ) Φ ( )s f
T T2 (14)

With H is the elastic coefficient matrix and B is the interpolation
functions gradient matrix.

In the case of plane stress, the PSD matrix can be written as [15]:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
Φ =

Φ Φ Φ
Φ Φ Φ
Φ Φ Φ

s

s s s s s s

s s s s s s

s s s s s s

xx xx xx yy xx xy

yy xx yy yy yy xy

xy xx xy yy xy xy (15)

3. Multiaxial fatigue damage analysis

3.1. Formulations and developments

The main purpose of multiaxial fatigue criteria is to determine the
location of the critical point in a structure. It can be assumed, by many
authors, that the crack initiation is governed by the second invariant of
the deviator stress tensor [16,17]. This can be seen in the Crossland's
criterion (Eq. (16)) and Sines Criterion (Eq. (17)) where J a2, is the
second invariant of the deviator stress tensor.

D
J α p t

β
=

+ max { ( )}
≤ 1Crossland

a
t T

2,
0≤ ≤

(16)

D
J αE

β
=

+ [p(t)]
≤ 1Sines

a2,

(17)

Where p(t) is hydrostatic pressure which is determined by the normal
stresses components S S,xx yyand Szz of the stress tensor Sij (Eq. (18)) and
α β, are constants related with the material. For the Sines criterion,
they are defined by the endurance limit in alternating traction f−1, the
endurance limit in alternating torsion t−1 and the breaking strength
Rm.(Eqs. (19 and 20)).

Trace S S S Sp(t) = 1
3

{ } 1
3

( + + )xx yy zzij (18)

t R f
f R

α =
3 ( + )

− 6m

m

−1 −1

−1 (19)

tβ = −1 (20)

It can be noted that the Crossland's criterion need the calculation of
maximum of the hydrostatic pressure while the Sines criterion uses it's
mean. This reduces the calculation time of the Damage if it's calculated
by the Sines criterion and have almost the same result such as the
Crossland's criterion [18].

Let's consider now a linear structure subject to stationary ergodic
Gaussian loads. According to Eq. (2), the crack will not initiate before
Ne repetitions of the periodic random load of duration T if the average
of the damage should not exceed the fatigue limit. The Sines criterion is
defined then by:

E D
E J αE

β
[ ] =

[ ] + [p(t)]
≤ 1Sines

a2,

(21)

The problem now is the determination of the average of the shear
stress amplitude E J[ ]a2, .

In the time domain J a2, is defined by the Eq. (22).

J max s t= 1
3

( )a
t T

c2,
0≤ ≤ (22)

Here s t( )c is the Von Mises Constrain. The problem here is that s t( )c
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