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A B S T R A C T

Realistic 3D finite strain analysis and crack propagation with tetrahedral meshes require mesh refinement/
division. In this work, we use edges to drive the division process. Mesh refinement and mesh cutting are edge-
based. This approach circumvents the variable mapping procedure adopted with classical mesh adaptation
algorithms. The present algorithm makes use of specific problem data (either level sets, damage variables or
edge deformation) to perform the division. It is shown that global node numbers can be used to avoid the
Schönhardt prisms. We therefore introduce a nodal numbering that maximizes the trapezoid quality created by
each mid-edge node. As a by-product, the requirement of determination of the crack path using a crack path
criterion is not required. To assess the robustness and accuracy of this algorithm, we propose 4 benchmarks. In
the knee-lever example, crack slanting occurs as part of the solution. The corresponding Fortran 2003 source
code is provided.

1. Introduction

Division of tetrahedra with applications to fracture can make use of
mesh adaptivity algorithms using edge-based division. 3D adaptivity is
a classical subject and is discussed in mesh generation textbooks, cf.
[11]. However, several aspects, such as the general case of edge-based
division and the use of global node numbering to improve the division
quality were not previously addressed. In addition, applications to
fracture are infrequent and make use of specific crack front cases. We
here address these issues and show applications to fracture, including
slanting (see, e.g. [14] for an erosion-based algorithm predicting
slanting).

Several discretization-based 3D applications make use of tetrahe-
dron division:

• Level-set based operations and mesh creation/adaptivity for large
deformations, including biomechanics applications [4].

• Visualization [13,9].

• Fracture [2,26].

• Surgery modeling [18,20].

• Biomechanics [4].

In terms of objective for the mesh division, we focus here on the
required algorithms and a number of applications. It is known that
tetrahedron mesh subdivision based on edges or faces generates five
distinct members of the polyhedron family: tetrahedra, square pyr-
amids, triangular prisms (both pentahedra) and octahedra.
Tetrahedrization of square pyramids and octahedra can be made
compatible with neighbour elements1 for any give face-based criteria.
However, triangular prisms can degenerate in the so-called Schönhardt
prism, which is non-tetrahedrizable. Some Authors have been inserting
nodes inside the original tetrahedron to deal with Schönhardt prisms
(cf. [24]). The reason for this ad-hoc procedure is that two tasks are
simultaneously being performed: mesh improvement and tetrahedriza-
tion. Of course these are equally important and here we address them
separately. In terms of tetrahedron division, past work has dealt with
two distinct families of methods: edge-based [25] and face-based [22]
(Table 1).

Using global numbering (use the maximum node number), it is a
simple matter to show that triangular prisms can be made tetrahedriz-
able, as will be addressed later. Prototype quality of triangles and
tetrahedra (inverse relations given by P.L. George [12]) is given by:
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where β = 4 3triangle and β = 36 2tetrahedron . In (1)–(2) Atriangle is the area
of the triangle and Vtetrahedron is the volume of the tetrahedron. The edge
lengths are given by li with i = 1, 2, 3 for the triangle and i = 1,…,6 for
the tetrahedron. The evaluation of mesh quality, the corresponding
arithmetic average is used. We now discuss the division of tetrahedra
based on edges.

2. Edge-based cutting with pre-ordering

2.1. Marking edges and calculating the crack intersection point

To identify the corresponding edges and mark for splitting, we have
several choices, according to the main goal. Using two nodes of a given
edge, let them be N1 and N2, we have a local edge coordinate ξ such as
N1 corresponds to ξ = −1 and N2 to ξ =+ 1. If the surface is known from
a function xϕ ( ) = 0 such that x are the coordinates of a given point, we
use an affine relation to obtain the marked edge and corresponding
local coordinate ξ:
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where ϕ1 and ϕ2 are the images of ϕ in nodes N1 and N2. If ξ ∈ [−1, 1],
the corresponding edge is marked. We now introduce two additional
strategies for edge marking. In the case of edge length, we use the
following criterion for marking:
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where lN1N2 is the deformed edge length and lmax and lmin are the
maximum and minimum deformed edge lengths, respectively. In
addition, the typical value of the parameter fm adopted here is 0.75
and is introduced to avoid excessive remeshing. For the damage
problem, we have (see Fig. 1):

d L dh f l(1 − ) + <N N m N N1 2 min 1 2 (5)

where d is the indicative damage value at the edge, LN1N2 is the
undeformed edge length and hmin is the minimum edge size, which is
considered problem data. In (5), fm is introduced to incorporate the
effect of lN1N2 and damage in the same inequality. A typical value of fm
is 1.5 (Table 2).

Table 1
Case selection as a function of number of marked edges and topology (neighborhood relations).

Number of marked edges Description Case Local relations between local element numbering and case numbering

0 Single case #1 Any order
1 Single case #2 N1 and N2 are on the marked edge
2 A node shares two marked edges #3 N3 does not share a marked edge N4 shares two marked edges

Otherwise #4 N1-N2 corresponds to the smallest local marked edge

3 A node shares 3 unmarked edges #5 N3 is the corresponding node
A node shares three marked edges #6 N4 is the corresponding node
Otherwise #7 N1 and N2 have both two marked edges

4 One node contains 3 marked edges #8 N3 shares one marked edge and N4 shares three
Otherwise #9 Both N1 and N2 are on the unmarked edge

5 Single case #10 Both N1 and N2 are on the unmarked edge
6 Single case #11 Any order

Fig. 1. Edge division based on level set or damage value.

Table 2
Index sets for tetrahedrization of #PRI, #PYR, #TET and #OCT. #TET indicates a
tetrahedron, #PYR a pyramid, #PRI a triangular-base prism and #OCT a octahedron.

Solid: added edges Indices

#PRI: 4-6, 1-3, 1-6 1, 2, 6, 3
1, 6, 4, 3
1, 6, 5, 4

#PRI: 4-6, 2-4, 1-6 1, 2, 6, 4
1, 6, 5, 4
2, 6, 4, 3

#PRI: 4-6, 2-4, 2-5 1, 2, 5, 4
2, 3, 6, 4
2, 6, 5, 4

#PRI: 3-5, 1-3, 1-6 1, 2, 6, 3
1, 3, 5, 4
1, 6, 5, 3

#PRI: 3-5, 1-3, 2-5 1, 3, 5, 4
2, 5, 1, 3
2, 6, 5, 3

#PRI: 3-5, 2-4, 2-5 1, 2, 5, 4
2, 3, 5, 4
2, 6, 5, 3

Solid: added edges Indices
#PYR: 1-3 1, 2, 5, 3

1, 3, 5, 4
#PYR: 2-4 1, 2, 5, 4

2, 5, 4, 3
#TET: 1, 2, 3, 4
#OCT: 3-5 1, 3, 4, 5

1, 3, 5, 6
3, 4, 5, 2
3, 5, 6, 2

#OCT: 4-6 1, 4, 6, 3
1, 6, 4, 5
2, 4, 6, 5
2, 6, 4, 3
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