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A B S T R A C T

A novel enhanced 8-node hexahedral element based on the concept of consecutive-interpolation procedure
(CIP) is developed for the analysis of three-dimensional (3-D) linear solids and composite structures. The
developed element is named as CHH8 for the brevity. The patch test, locking test, free vibration and heat
transfer problems for simple and complex 3-D solids are analyzed. We also consider a 3-D sandwich beam with
a core layer made of polyurethane foam and two skin layers made of orthotropic carbon/epoxy composite. The
significant difference of the CIP-based approach, as compared with traditional finite element method, is the
integration of averaged nodal gradients into interpolation process, representing as a nonlocal feature. With
these additional terms, the proposed CHH8 element is able to produce higher accurate approximation of
physical fields and smooth gradient fields which are continuous across element boundaries. More importantly,
these advantages can be achieved without increasing the problem size, because the degrees of freedom still
remain the nodal values. Details about the proposed CHH8 element are presented. To show the accuracy of the
developed CHH8 element, numerical examples of 3-D solids and composite structures with simple and complex
configurations are considered, and the obtained results are then compared with reference solutions derived
from analytical, other numerical methods and experimental data.

1. Introduction

Finite element method (FEM) is well-estabilished and is known as one
of the most popular numerical methods for engineering problems.
However, the FEM inherently owns several shortcomings as mentioned
in [1,2]. One great limitation is that the shape functions used in FEM are
C0-continuous, thus the nodal gradient fields, e.g., the temperature
gradients of heat transfer problems or strain/stress fields of mechanical
problems, are non-physically discontinuous across element boundaries. In
practice, this issue is usually required to be treated during post-processing.

The boundary element method (BEM) [3,4] suggests to solve
boundary value problems without domain discretization. Advantages
of BEM has been shown for some specific problem, such as crack
modeling. However extraction of data points inside the problem
domain is quite challenging. Furthermore, fundamental solutions are
often required, which is not a trivial task in practice and thus limits the
application of the method.

New or improved numerical methods for engineering problems
have been one of major subjects to the scientific community, and

various alternatives have thus been previously introduced in literature.
A class of meshfree methods follow a different concept, in which the
problem domain is represented only by scattered nodes, including one
set of nodes inside the problem domain and another set of nodes on its
domain boundary. The solution steps of meshless methods are
generally similar, although not analogous, to those of FEM. Different
versions of meshfree methods have been introduced in the literature
including element-free Galerkin (EFG) method [5], reproducing kernel
particle method (RKPM) [6], moving Kriging interpolation method [7],
meshless local Petrov-Galerkin (MLPG) method [8], point interpola-
tion method (PIM) [9] and radial point interpolation method (RPIM)
[10]. Most of the meshfree methods, except the PIM and RPIM, do not
possess the Kronecker-delta property, and thus the boundary condition
cannot directly be imposed as that of the FEM, and are usually treated
with the aid of Lagragian multipliers or penalty method [5]. Meshfree
methods have successfully been applied to solve a wide range of
engineering problems, e.g., see [11,7] and references therein.

Isogeometric Analysis (IGA) [12,13] is an effective numerical
method, which employs non-uniform rational B-spline (NURBS) as
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basis functions, originally used in Computer-Aided Design (CAD), for
both representing geometry and approximating field variables. The
advantages of IGA is the full control in shape function order and
continuity. The disadvanges are the complexity in implementation and
difficulty in treatment of boundary conditions, as NURBS basis
functions in general do not possess the Kronecker-delta property.

Improvement of FEM draws much attention, with the aim to keep the
advantages of FEM while reduces its disadvantages. The recently proposed
consecutive-interpolation procedure (CIP) approach is among the latest
improvements focusing on providing results in which gradient fields are
continuous across element boundaries, which is physically favorable. The
approach was formulated for three-node triangular element (CT3), and
four-node quadrilateral element (CQ4) for two-dimensional linear elastic
problems [2,14,15], and for two-dimensional linear elastic fracture me-
chanics [16,17]. More recently, Nguyen et al. [18] applied the CIP to the 4-
node tetrahedral element to form a new element named as CTH4, which is
devoted to 3-D heat transfer problems.

The major motivation of the CIP-based elements is to make the trial
solution and its derivatives continuous across inter-element boundaries
[2,15]. This not only can improve the accuracy of the computed
gradients of the solution, but also avoid using smoothing techniques,
which is often used in the post-processing step. Previous numerical
solutions of elastostatic, elastodynamic and fracture problems reported
in [2,14–17] have shown that the CIP-based elements offer, for the
same number of degrees of freedom, higher accuracy of the solutions
and better convergence than those for the conventional T3 and Q4
elements. Moreover, smoothed stresses at nodes can also be obtained
without using smoothing operations. As pointed out in [2,15] that the
shape functions for the CIP-based elements are linearly independent,
satisfy the partition-of-unity, possess the Kronecker-delta function
property, and alleviate the volumetric locking issue for incompressible
materials. As the CIP does not alter the usual procedure of finite
element analysis, the CIP-based elements can easily be implemented in
existing FEM codes. Nevertheless, the main desirable features of the
CIP-based elements have already been discussed and pointed out in
our previous published papers, e.g., see [2,15–18], and also [14].
Therefore, we do not repeat them here, and curious readers may refer
to the given references for more detail.

The main objective of this paper is to develop a novel effective 3-D
element, which integrates the CIP into the 8-node hexahedral element
(named as CHH8) to solve 3-D linear elasticity and composite
structures. The natural frequency and heat transfer of 3-D solids are
analyzed. A 3-D sandwich beam with a core layer made of polyurethane
foam and two skin layers made of orthotropic carbon/epoxy composite
is also analyzed. It is expected that the novel CHH8 element could yield
and provide better accuracy than the conventional hexahedral element
(HH8), tetrahedral element (TH4), even CTH4 element [18]. Another
purpose of this paper is to verify the general formulation described in
[18] to this new CHH8 element. All the numerical results computed by
using the developed CHH8 element are validated with respect to
reference solutions, which are derived from analytical results, other
numerical methods and experimental data.

The rest of this paper is structured as follows. After the introduc-
tion, formulation of the novel 3-D CHH8 element is presented in detail.
The weak form of linear elastic problems and their numerical results
are given in Section 3. The analysis of heat transfer problems is
presented in Section 4. Application to composite structures is pre-
sented in Section 5. Our conclusions drawn from this study are given in
Section 6.

2. Formulation of consecutive-interpolation 8-node
hexahedral element

2.1. Preliminaries to the consecutive-interpolation (CIP) technique

Let us consider a 3-D body in the domain Ω bounded by the

boundary Γ. A function u x( ) defined in Ω is approximated by the
consecutive-interpolation (CIP) scheme as
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where n is the number of nodes and u I[ ] is the value of function u x( )
evaluated at node I (global numbering) by the finite element inter-
polation
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are the averaged nodal gradient of u x( ) evaluated at node I, corre-
sponding to x, y and z direction, respectively. The first order derivative
of u x( )x

e
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[ ] evaluated at node I (global numbering) within an element e,
can be written by finite element interpolation as follows:
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with ne being the number of nodes within element e. With the nodal
gradients u x( )x

e
I,

[ ] ready, for all the elements e S∈ I that share the node I,
the averaged value u x
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Here, the weightswe are defined by the ratio of the volume of element e
and the total volume of the set SI. Similarly, the averaged nodal
derivatives with respect to y and z direction, i.e. u y

I
,
[ ] and u z

I
,
[ ], can be

computed in such a way. In order to maintain the Kronecker-delta
property, the auxiliary functions ϕ, ϕIx, ϕIy and ϕIz in Eq. (1) have to be
determined for each type of element and must satisfy the following
conditions

ϕ x δ ϕ x ϕ x ϕ x
ϕ x ϕ x δ ϕ x ϕ x
ϕ x ϕ x ϕ x δ ϕ x
ϕ x ϕ x ϕ x ϕ x δ

( ) = , ( ) = 0, ( ) = 0, ( ) = 0
( ) = 0, ( ) = , ( ) = 0, ( ) = 0
( ) = 0, ( ) = 0, ( ) = , ( ) = 0
( ) = 0, ( ) = 0, ( ) = 0, ( ) =

I J IJ I x J I y J I z J

Ix J Ix x J IJ Ix y J Ix z J

Iy J Iy x J Iy y J IJ Iy z J

Iz J Iz x J Iz y J Iz z J IJ

, , ,

, , ,

, , ,

, , , (5)

Eq. (1) can then be rewritten to approximate the value of function u at
arbitrary point x located within an element e
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The CIP-based shape function associated with node l, Rl, can then be
explicitly written by

∑R ϕ N ϕ N ϕ N ϕ Nx x x x x x x x x( ) = [ ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( )]l
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It is noticed that there might exist more than one set of auxiliary
functions for any given single arbitrary type of finite element. In the
reference works, e.g., see [14,2,16], only the polynomials-based
auxiliary functions are given, and the set of auxiliary functions are
developed specifically for each element type, e.g. three-node triangular
element and four-node quadrilateral element. Recently, the work
reported by Nguyen et al. [18] however proposed a general formulation
for polynomial-type auxiliary functions, defined locally in each element
e. Consequently, the auxiliary functions at the local ith node of element
e are thus calculated by
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