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A B S T R A C T

We introduce an efficient approach to obtain conforming meshes for evolving branched cracks immersed in a
fixed background mesh. The proposed approach is built on universal meshes (UM) proposed in Rangarajan
et al. [34] which is able to construct conforming triangulations for a propagating simple crack. The UM
functions by projecting certain nodes of the background mesh onto the crack and simultaneously relaxing their
neighboring nodes to improve the quality of the resulting triangular mesh. The essence of the generalization to a
branched crack is to determine which side of each branch to select nodes to move to the crack path. The choice is
based on the consideration of minimizing mesh distortion. For the case of multiple junctions, we take into
account the constraint that the nodes to be moved to the same crack branch must be on the same side of that
branch. The proposed method inherits the main advantages of UM, including small perturbation to a fixed
background mesh for a family of evolving cracks with no a priori conformity requirements. This advantage
saves computational time compared with a brute-force mesh generation step. Numerical examples with one or
multiple triple or quadruple junctions are provided.

1. Introduction

Dynamic crack analysis is essential in applications such as impact
and explosion. Very often, an initially simple crack will bifurcate into
two or more branches. Another scenario when bifurcation may occur is
when the cracked material exhibits certain heterogeneity. Experimental
and theoretical study of such phenomena has been an active field of
research [1–9]. A typical example is hydraulic fracturing: when the
hydraulic fracture intersects the natural fissures or layers, it may
bifurcate into multiple branches, resulting in a complex fracture
network [10].

Numerical analysis of crack propagation with the possibility of
bifurcation allows gaining more insights of the process and more
information for engineering designs. Such numerical methods can be
roughly classified into two families: One explicitly taking into account
the discrete crack paths, and the other adopting a smeared description
of the cracks.

The smeared description of cracks is appealing since apparently the
crack path evolution is obtained for free, without extra criteria for
nucleation and bifurcation other than the evolution of the primary
fields. Phase field methods for fracture are a typical kind of methods in
this family [11–16], with [17] focused on branching. One of the
drawbacks of such methods is, due to the a priori unknown crack
path, the need to either employ a very fine mesh or an adaptively

refined mesh [18,19]. The gradient damage models [20] are another
types of models of this kind.

In contrast, the discrete crack approaches generally simulate the
crack evolution by obtaining the displacement, velocity and stress
fields, calculating the crack increment and then updating the spacial
discretization for the evolving crack. This requires two ingredients: An
efficient solver for the elastic or elastoplastic field, and a branching
criterion (including the critical crack speed and the directions of the
new branches) such as that proposed by Katzav et al. [21]. For the first
ingredient, distinction can be made on whether the spatial discretiza-
tion needs to conform to the evolving cracked domain.

Employing a crack-independent mesh, the extended finite element
method (XFEM) [22–24] approximates the displacement field via the
introduction of Heaviside functions and leading terms of the near-tip
asymptotic expansion. Nevertheless, XFEMs require processing ele-
ments divided by arbitrary crack paths, leading to complicated
geometric programming, involved numerical integration, and possibly
ill-conditioned stiffness matrix due to arbitrarily small pieces cut by the
crack. Such disadvantages are overcome by various modifications of the
method; however, if a conforming mesh is adopted, the aforementioned
issues will disappear.

Several approaches can be used to obtain a conforming mesh for a
propagating crack, or more generally, an evolving domain. A brute-
force approach is to automatically mesh the cracked domain whenever
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the crack is extended. An improvement can be achieved by only re-
triangulating the surrounding region of the crack tip, such as the
approaches given in [25,26].

In [27], Negri proposed a mesh adaptation method for free
discontinuity problems such as Mode III fracture, which does not need
to re-mesh. This approach was later adopted by Fraternali [28] for in-
plane crack problems.

Proposed by Rangarajan and Lew [29], the method of universal
meshes (UM) provides an efficient approach to generate conforming
meshes for evolving closed domains with a smooth boundary, using a
fixed background mesh, see also [30]. As a result, only a fraction of the
vertices, basically those near the evolving boundary of the domain,
have to be adjusted: some projected to their respective closest point on
the boundary, and some undergoing a relaxation procedure to improve
the quality of resulting elements. The applicability of the method rests
on the following three requirements:

1. The evolving boundary has to be C2-continuous, or at least piecewise
C2-continuous;

2. The background mesh consists of only acute triangles;
3. The background mesh is sufficiently refined in the vicinity of the

evolving boundary; more precisely, the mesh size does not exceed
one fifth of the radius of the curvature of the evolving boundary.

The reader is referred to more recent developments of UM with
applications to time-dependent problems with prescribed boundary
evolution by Gawlik and Lew [30], to obstacle problems in a low
Reynolds number flow by Gawlik et al. [31], to a surface with no
boundary in three dimensions by Kabaria and Lew [32], and to a three-
dimensional domain by Kabaria [33].

Rangarajan et al. [34] and later Chiaramonte et al. [35] applied the
approach to account for a propagating simple crack. Here for conve-
nience of explanation, a distinction of a “positive” side and a “negative”
side of the crack is needed, although the choice is immaterial for a
simple crack. Then if a triangular element has exactly two vertices on
the positive side, it is called a “positive triangle,” and the edge formed
by said two vertices is called a “positive edge.” The essence of UM
consists in finding a triangle-free chain of vertices, and then projecting
such vertices onto the crack path, at the same time relaxing neighbor-
ing vertices. This triangle-free chain is mostly made of positive nodes
but adjustment is allowed to ensure that no three vertices that form a
triangular element are all chosen in the list.

In this work, we generalize the method presented in [34] to a
branched crack, i.e., a crack with one or multiple junctions. A junction
can be a triple one or a quadruple one, or one with more than four
branches. The essence of the proposed method is a robust manner to
determine the “positive side” for each branch, from which most of the
vertices to be projected to the corresponding branch will be selected.
The determination of these positive sides is based on the desire to
alleviate mesh distortion, and is no longer arbitrary as opposed to the
case of a simple crack.

The main idea of the proposed method is as follows. Take the case
of a triple junction as an example. For the moment, assume that there
is a vertex coincident with the junction. Then if this vertex has n
neighboring vertices, i.e., shared by n edges, n usually varying between
4 and 8, then the number of ways to associate each of the three crack
branches with any of the n edges does not exceed P n n n= ( − 1)( − 2)n

3 .
Note that this counting already covers pathological cases with two
branches forming a small angle. We then define an algebraic objective
function, with each combination above as the variable, that charac-
terizes the mesh distortion that would occur when UM is applied
according to the chosen combination. With this setup, we can select the
minimizer as the choice of pairing, and this selection also determines
the positive sides for UM to be applied later.

The case of multiple junctions in the same crack does not introduce
much extra complexity. Only a constraint that the positive side of any

simple branch between two junctions should be on the same side has to
be enforced in the process of searching these positive sides.

The proposed method inherits the above three requirements on the
crack path and the mesh for using UM, and also maintains the key
advantages of UM, i.e., obtaining the conforming mesh by only
perturbing a few vertices of the fixed background mesh.

The structure of the rest of the paper is as follows. In Section 2 we

Fig. 1. Illustration of Step 1 for a simple crack: Moving the closest nodes to coincide
with the tips and moving the neighboring nodes according to (2). (a) A cracked domain,
with an initially non-conforming mesh in red, and the mesh after Step 1 in gray. The
crack is shown in green. (b) Magnification of the vicinity of the right crack tip of (a). (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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