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A B S T R A C T

In this work we extend a total Lagrangian formulation developed for dynamical nonlinear analysis of elastic
plane frames to include structural energy dissipation and sliding connections (as prismatic and cylindrical
joints). The joints move in a path that may present an arbitrary roughness profile along its trajectory. Their
exact kinematical restraints are introduced in the total mechanical energy of the system by the method of
Lagrange multipliers. The structural energy dissipation is considered by a modified Kelvin-Voigt rheological
model, for which a pure numerical procedure for the strain rate approximation (finite difference) is proposed.
The dynamical equilibrium equation is obtained by a variational principle and the nonlinear solution procedure
is done by the Newton-Raphson method. Several examples are presented to demonstrate the efficiency of the
proposed formulations.

1. Introduction

The consideration of flexibility in dynamical systems with sliding
connections is essential in Engineering practice due to the crescent
improvements in the materials employed. The enhancements and
specialization of such materials lead to the use of increasingly slenderer
and lighter structures and mechanisms for which a rigid body or a
linear geometrical analysis is not suitable. Moreover, the mechanical
system may also exhibit important dissipative properties which are
intrinsic to the material and depart from the purely elastic situation.

Formulations capable to accurately reproduce this complex beha-
viour of the solid during its overall motion are of great interest. Some
applications that include nonlinear dynamics and sliding connections
can be cited: satellite antennas, robot arms and cranes, as well as the
interaction between vehicle motion and the structural response of
bridges.

To properly represent the behaviour of such structures and
mechanisms, numerical methods need to correctly describe large
displacements and rotations together with the consideration of non-
monolithic connections between the parts of a mechanical system, such
as, particularly to this study, prismatic and cylindrical joints. It is
important to stress that in this work we are worried with viscous
dissipation inside the members of structures and mechanisms, this
dissipation can be also used when relative orthogonal movement
between these parts are present. If a more consistent approach of

frictional contact is of interest, readers are invited to consult, for
example, the work [1].

Differently from what is proposed in this work, the most dissemi-
nated formulations for dynamical analysis of sliding connections in the
Finite Element Method (FEM) are based on the updated Lagrangian
approach, mainly co-rotational formulations as presented in [2–5].
Additionally, the consideration of kinematic pairs is usually done by
means of multibody dynamics formalisms [6–9], which, ultimately, use
the background of rigid body mechanics to generate the floating, or
shadow, frame approach [10,11] which extends the linear theory to a
moving reference frame in a direct manner. The assumption of small
deformations in the intermediate frames made by those theories leads
to an inexact displacement-strain relation and introduces error accu-
mulation for long term updating processes [12–14]. Also, since the
reference system is not the material one, the mass matrix varies
according to the frame orientation, requiring the use of special time
integration schemes [15–20].

Conversely, in this study we approach the problem of a constrained
mechanical system by a total Lagrangian FEM formulation based on
the nonlinear solid mechanics theory developed for large deformation
analyses, following [21,22]. This formulation is originally extended
here to comprise sliding connections and dissipation for plane frame
and flexible mechanisms dynamical analysis. The Saint-Venant-
Kirchhoff constitutive model is employed to define the solid elastic
strain energy using the Green-Lagrange strain and the second Piola-
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Kirchhoff stress tensor. Furthermore, since in this technique velocity
and acceleration are Lagrangian variables, which depends upon a fixed
reference frame, the mass matrix is constant for the entire analysis and
the Newmark algorithm is applicable as enlightened by [13,23–27].
Although our formulation is total Lagrangian, as the majority of
approaches in literature are updated Lagrangian or co-rotational, we
redirect readers to the important works [28,29] regarding the so called
energy conserving and energy dissipating time integrators.

Since the adopted finite element uses positions as the main degrees
of freedom, instead of displacements, the kinematical constraints
imposed by the joints are introduced very simply in the total energy
of the system by means of Lagrange multipliers. We also introduce an
arbitrary roughness profile in the trajectory in a straightforward
manner allowing diverse modelling options. It is important to mention
that exists other approaches to introduce kinematical constrains such
as penalty-based techniques [30–32] and master-slave elements [2,33–
35]. However, none of the consulted literature includes arbitrary
roughness profile in its formulation, which is usually considered by
means of equivalent forces or simplified mass/spring/damper systems
[36–39].

Internal material damping effects can be introduced in the system
as an intrinsic property of the solid, in contrast to velocity-dependent
environmental dissipations such as air drag, to simulate, for example,
shock absorbers in suspension systems. For this reason, we develop a
viscoelastic model for the plane frame which is a modified version of
the Kelvin-Voigt rheological model. The usual treatment of linear and
nonlinear viscoelastic formulations is done by decaying functions for
the material properties leading to frequency domain analysis and
convolution integrals as explained by [40–46]. It is important to note
that the consulted works that deals with large strains and viscoelasticity
adopts updated Lagrangian approaches.

The proposed approach to solve the strain rate is total Lagrangian
and purely numerical, i.e., does not use convolutional processes to
solve viscosity. It is inspired in the simple one dimensional vibration
absorber presented by [47] in which the Green strain measure is used
for nonlinear trusses analysis and in the works [48–50] that uses
purely numerical integration of viscoelastic models for linear applica-
tions, in which a relation of creep and relaxation functions and the
viscoelastic constants is proposed.

The organization of this work is as follows. The kinematics of the
plane frame element is explained in Section 2. In Section 3 the
equations of motion are derived for the unconstrained mechanical
system introducing the proposed viscoelastic model. Sections 4 and 5
depict the kinematical constraints imposed by prismatic and cylindrical
joints and its consideration in the equation of motion, respectively.
Section 6 presents the nonlinear system solution procedure along with
the time integration schemes adopted. Section 7 indicates how to
calculate the frame internal efforts and Section 8 shows several
examples proving the accuracy of the proposed formulation as well as
its application to practical engineering problems.

2. Plane frame kinematics

The adopted FEM solution procedure is obtained from the principle
of stationary total mechanical energy and, therefore, the strain energy
stored in the frame element must be calculated. To calculate the strain
energy, it is necessary to define the way one achieves the strain
distribution as a function of the body position, limited to a finite
number of degrees of freedom. In order to do so, we write the initial
and current positions of a frame element as a function of its nodal
positions, angles and non-dimensional variables.

2.1. Initial configuration

To build the total Lagrangian procedure we start describing the
initial configuration of a frame element. Fig. 1 shows the reference line

of the initial configuration, the non-dimensional space from which the
reference line mapping is written and the nodes of the finite element.

The mapping of the reference line xi
m is written by the function fi

m0

as:
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where, i is the direction (1 or 2), m indicates reference line and ℓ is the
index that represents nodes and shape functions ϕ ξ( )ℓ (Lagrange
polynomials of any order). Nodal coordinates at the reference line
are designated by Xi

ℓ and repeated indices indicate summation.
At the initial configuration, the nodal coordinates are known and

the cross sections are considered orthogonal to the reference line. Thus,
from Fig. 1, one calculates the tangent vectors at each node k by:
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in which comma indicates derivative.
From Eq. (2), the normal vectors that generate cross sections at the

nodes are written as:

N T T N T T= − /||
→

|| and = /||
→

||k k k k
1 2 2 1 (3)

where T||
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|| is the Euclidean norm of the nodal tangent vector.
To use angles as nodal parameters, one calculates, from Fig. 1:
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in which parenthesis indicate no summation.
Knowing the element nodal angles, one can define a cross section at

any position along the frame element using the same approximation
adopted for coordinates, i.e.:

θ ξ ϕ ξ θ( ) = ( )0
ℓ ℓ

0
(5)

From the reference line initial position and cross sections orienta-
tion one defines the frame element initial configuration as depicted in
Fig. 2.

One can understand from Fig. 2 that the initial configuration
mapping is written using a non-dimensional space ξ η( , ) by:

x ξ η x ξ g ξ η( , ) = ( ) + ( , )i i
m

i
0

(6)

where the vector g ξ η( , )i
0 is a function of θ ξ( )0 , η and the height h0 of the

finite element, given as:
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Substituting Eqs. (1) and (7) into Eq. (6) results the complete initial
configuration mapping of the frame element, as:

Fig. 1. Reference line parameterization for the initial configuration (cubic finite element
approximation).
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