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A B S T R A C T

Using thin reinforcements is a common way to strengthen structures, as in reinforced concrete for example.
From a numerical point of view, dealing with these reinforcements is tedious, because of their diameter which is
usually small compared to the characteristic dimensions of the structures, therefore requiring very fine meshes
to represent them accurately. In this paper, a new approach allowing to mix a volumic and a lineic modeling of
the reinforcements is proposed. Fine meshes with a volumic representation of the reinforcements are used in
the zones of interest of the structure, whereas coarser meshes associated to lineic elements are used in the rest
of the structure in order to decrease the computing times. A methodology to ensure the transition between both
modeling is proposed, so that the results in the zones of interest are similar to the results that would be obtained
with a full volumic representation of the reinforcements. The efficiency of the method is illustrated on several
examples, involving linear elasticity and plasticity.

1. Introduction

Including “almost-1D” reinforcements, that is to say elements with
one dimension much greater than the two others, is a common way to
strengthen structures. A well-known example is reinforced concrete
structures, where steel reinforcements are used in the zones where
tensile stresses prevail, to make up for the low tensile strength of
concrete. Numerical simulation of such structures is quite challenging
from a geometrical point of view. Indeed, the diameter of the
reinforcements is usually small compared to the characteristic dimen-
sions of the structures (at least one order of magnitude smaller in the
example of reinforced concrete structures), requiring very fine finite
element meshes to represent them accurately. As a result, the necessary
CPU resources and computation times can become very high.

In order to take into account these reinforcements with reasonable
computing costs, different approaches were developed in the literature.
The smeared model [1] consists in adding the stiffness of the
reinforcements to the volumic elements containing them, introducing
orthotropy in the reinforcements direction. This approach is well suited
for structures were the reinforcements are perfectly bonded and are
arranged in a regular pattern. More recently, David [2] developed a
membrane model for regularly spaced reinforcements, based on
asymptotic expansions, which is more accurate and allows to take into
account loss of bond. In the discrete model, 1D bar elements are added
along the edges of the volumic elements. It is more flexible than the
smeared approach, since the layout of the reinforcements does not
need to be regular anymore, but their paths still need to follow the

nodes of the volumic mesh. Finally, the embedded approach [3,4]
allows any reinforcements layout, independently of the volumic mesh.

These approaches give good global results, but are not designed to
get accurate local results around the reinforcements, as shown in [5]
for instance. To sum up, there are two possibilities to model the
reinforcements: using a 3D volumic mesh, which would give the most
accurate results but is incompatible with industrial studies because of
the too large computing costs, or using a smeared or a 1D representa-
tion of the reinforcements, decreasing the computing costs but leading
to inaccurate local results. The approach proposed in this paper rests
upon the idea that, when performing the finite element analysis of any
structure, it is often possible to identify zones of interest, that is to say,
parts of the structures where accurate results are wanted (because of
stress concentrations, or because these are critical parts for which one
wants to know how it will deteriorate, etc). Usually, fine meshes are
used in such zones, whereas coarser meshes are used in the rest of the
structure to decrease computing costs. Now, applying this idea to
reinforced structures, we propose in this paper a method that allows to
use a volumic representation of the reinforcements in the zone of
interest, and a 1D representation in the rest of the structure. The
volumic representation in the zone of interest will allow to get results as
accurate as possible, especially close to the reinforcements, whereas the
1D representation will allow to use coarser meshes away from the zone
of interest, therefore reducing computing times. The transition be-
tween both representations will ensure that the results in the fine zone
will be close to the results that would have been obtained with a full
volumic representation of the reinforcements in the whole structure.
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Combining 1D/2D and 3D models in the same computation has
already been done, as in [6,7] where coupling 1D beams or 2D plates to
3D bodies was achieved by equating the work at the interface between
both representation, resulting in constraint equations between 1D/2D
and 3D degrees of freedom. In [8], Nitsche's method [9] is applied to
the beam/solid and plate/solid coupling. However, the main difficulty
with the existing methods is the need to ensure the compatibility
between the beam/plate particular kinematic and the volumic one. In
this paper, we will consider structures where the reinforcements have a
small enough diameter so that we can assume that they behave like bar
element, working in tension/compression. However the proposed
approach would still be useful if the bending energy was taken into
account [10].

This paper is organized as follow: Sections 2 and 3 introduce the
numerical tools involved in the proposed method, as well as their
limitations. In Section 4, the solution to combine these tools in order to
answer the issues raised above is explained. Some results to illustrate
this method are shown in Section 5. Finally conclusions are drawn in
Section 6.

2. Volumic model

The most direct approach to model reinforcements would be to
mesh them using volumic finite elements. This process may be
complicated, considering their small diameter, their number, and their
path which may be complicated (intersecting or tangent reinforce-
ments, curved paths, etc). However, the eXtended Finite Element
Method (X-FEM) can be used, as done in the work of [11]. This method
was first introduced by Moës et al. [12] to deal with crack propagation,
with meshes independent of the crack path. Based on the concept of
Partition of Unity [13], it relies on the use of enrichment functions to
introduce discontinuities into the classical finite elements, as well as
level-set functions to locate these discontinuities. The enrichment
strategy proposed in [14], dedicated to the analysis of inclusions, is
used in this paper for the volumic part of the reinforcements, and will
be reminded below.

2.1. The eXtended finite element method (X-FEM)

Consider the bidimensional problem depicted in Fig. 1 a, a circular
inclusion made of a material A, in a rectangular plate made of a
material B. The plate is meshed with elements whose nodes do not
coincide with the material interface. The set I denotes the nodes of the
mesh, whereas J is the set of the nodes which need to be enriched. J is
defined as the set of nodes belonging to the elements crossed by the
material interface (cf. Fig. 1a). The X-FEM approximation consists in
finding a displacement solution of the form:
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where N( )k k i j= , are the classical finite element approximation func-
tions of node k , ui are the classical finite element degrees of freedom, ai
are the enriched degrees of freedom and F is the enrichment function.
In this paper we consider that the two materials are perfectly bonded:
therefore, uh must be continuous over the domain. However, because of
the change of material properties, the strain will be discontinuous at
the interface. The enrichment function F is thus chosen continuous,
but with a discontinuous derivative.

To define F , the position of the interface must be determined. A
level-set function ϕ is introduced to locate the interface Γ between
material A and B so that:

Γ ϕx x= { ∈ : ( ) = 0}2 (2)

ϕ x( ) is chosen to be positive if x is outside Γ , negative if x is inside Γ
and equals zero if x is on Γ . An example of level-set defining the
inclusion of Fig. 1a. is given in Fig. 1b. The main example of level-set
function is the signed distance function to the interface:

ϕ x x x( ) = ± min ∥ − ∥
Γ

Γ
x ∈Γ (3)

In the particular case of a cylindrical reinforcement, we use the
following level-set function:

ϕ rx x x( ) = min ∥ − ∥ −
Λ

Λ
x ∈Λ (4)

where r is the radius of the reinforcement and Λ is its center-line (the
1D curve defining the reinforcement path through its center). From a
numerical point of view, ϕ is discretized using the linear finite element
shape functions Ni :

∑ϕ N ϕx x( ) = ( )
i I

i i
∈ (5)

where the ϕi are the nodal values of the level-set function. Now that the
position of the interface is known, the enrichment function can be
defined. We consider the ridge function from [14]:
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F is shown in 1D on Fig. 2.
Some authors also proposed to treat material interfaces at the

integration point level [15]. However, as illustrated in Appendix A, this
approach has a lower convergence rate than the X-FEM. On the
contrary, for a given mesh density, the X-FEM and conforming FEM
lead to similar results without meshing burden, which motivates the
use of the X-FEM here.

Fig. 1. Representation of a circular inclusion in a square plate, using the X-FEM method. a. Definition of the enriched nodes. b. Localization of the interface using a level-set function.
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