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a b s t r a c t

Perfectly Matched Layer (PML) is recognized as a very effective tool for modeling unbounded domains.
Nonetheless, the computation time required by the PML may be large, especially when an explicit time
integration scheme is adopted for dealing with the wave propagation problem both in the domain of
interest and in the PML medium. In this paper, it is proposed to investigate subdomain strategies
enabling the appropriate time integration scheme in the PML with its own time step to be chosen,
independently of the choice of the time scheme in the domain of interest. We focus on explicit time
integrator in the physical subdomain (Central Difference scheme) associated with a fine time step
satisfying the CFL stability criterion. The PML formulation proposed by Basu and Chopra (2004) [1] for 2D
transient dynamics, has been coupled with the interior physical subdomain using the dual Schur
approach proposed by Gravouil and Combescure (2001) [2]. Hybrid (implicit time integrator for the PML)
asynchronous (multi time steps) PMLs have been derived. Their very good accuracy has been shown by
considering the following numerical examples: Lamb's test, loaded rigid strip footing on an half space
and a layered half space.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The simulation of wave motion in unbounded media requires
the introduction of artificial boundaries surrounding the bounded
computational domain. Several techniques have been developed to
reproduce an unbounded domain for elastic wave propagation:
the infinite elements (Bettess [3], Su and Wang [4]), appropriate
absorbing boundary conditions (Enquist and Majda [5]), absorbing
layer methods such as the Rayleigh damping layers (Semblat et al.
[6], Rajagopal et al. [7]) or the Perfectly Matched Layers (PML)
(Chew and Liu [8]). The perfectly matched layers (PML) is an
absorbing layer method which surrounds the computational
domain with an uniform thickness layer. The PMLs are character-
ized by their capabilities of providing the same attenuation for all
frequencies and all angles of incidence without any reflection from
the interface.

The PML was originally developed for the electromagnetic
waves by Bérenger [9] using a field-splitting formulation and

became one of the most widely used methods in the simulation of
wave propagation problems in unbounded media. The technique
was then adapted to the elastodynamic equations. Hastings et al.
[10] extended the PML from electromagnetics to elastodynamics
using a formulation in terms of displacement potentials imple-
mented in the finite difference framework. Using also the finite
difference method, Chew and Liu [8] introduced a new split-field
formulation for isotropic media, based on the velocity and stress
fields. Later on, Collino and Tsoga [11] proposed a finite difference
split-field formulation similar to Chew et al. [8], applied to ani-
sotropic media. In [12], Wang et al. developed a new PML for-
mulation, called C-PML based on unsplit-field formulation, using
convolution features adapted to the finite difference method. Next,
Matzen [13] extended the C-PML approach to the finite element
method. In this work, we focus on the unsplit-field formulation in
the framework of the finite element method developed by Basu
and Chopra for applications involving 2D media [14,1]. More
recently, this formulation was extended by Basu to 3D media in
the framework of explicit computations [15] and implemented in
the FE code LS-DYNA [16]. From the frequency-domain equations
of Basu and Chopra, Kucukcoban and Kallivokas derived an unsplit
mixed approach of the PML, by retaining the displacement and
stress fields as unknowns in the time domain [17]. Next, in order
to couple their PML to a displacement-only field formulation in
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the physical interior domain, the authors extended their PML to a
mixed hybrid approach [18,19].

Following the same idea, it is of great interest to adopt an
efficient explicit time integration with a fine time step for the
wave propagation into the soil medium without constraining the
choice of the time integrators and time step size for the other
partitions of the complex soil–structure interaction problem.
Indeed, under an earthquake excitation, the problem is multi
physics by nature with phenomena occurring at very different
space and time scales into the soil and solid media. In this paper,
the proposed approach enables the unphysical PML medium to be
integrated in time independently of the physical domain. The main
benefit is a higher versatility and numerical efficiency of the PML
which can be implemented using a more appropriate time inte-
grator associated with a larger time step than the one employed in
the soil medium imposed by the CFL condition for ensuring the
algorithm stability [20]. The proposed PMLs can be viewed as a
hybrid and asynchronous PML version because different time
integrators can be adopted as in the work of Kucukcoban and
Kallivokas [18,19], with the adding desirable properties of dealing
with different time scales in the same dynamic simulation.
Moreover, the proposed approach enables the number of
unknowns to be reduced in comparison to the previous mixed
displacement-stress formulation. More precisely, only displace-
ment quantities are solved in time, at the expense of requiring
more storage and calculations involving strain and stress integrals
in the PML [1].

The subdomain method proposed by Gravouil and Combes-
cure [21] provides the suitable properties for coupling an explicit
time integrator for the subdomain of interest with Newmark
implicit time integrators for the other partitions, including the
PMLs. The method follows a dual Schur approach by ensuring the
velocity continuity at the interface through the use of Lagrange
multipliers. The velocity continuity is considered at the fine time
scale, that is associated with the time step satisfying the CFL
condition. The method is proved to be stable for any Newmark
(explicit and implicit) time integrators [22] using the so-called
energy method (Hughes, [20]). It leads to the first order of
accuracy when coupling second order accurate time integration
schemes due to a slight spurious dissipation at the interface as
soon as different time steps are adopted. When adopting the
same time step, the second order of accuracy is achieved [23].
The GC method was adopted in previous works in order to
design implicit, multi directional, multi time step absorbing
layers, based on increasing Rayleigh damping ratios in the
thickness of the absorbing layers (Zafati et al. [24,25]). Recently,
Brun et al. [26] proposed a general framework to derive a family
of coupling algorithms from the energy method, initially
employed for ODE (Ordinary Differential Equation) and gen-
eralized to DAE (Differential Algebraical Equation) after the
introduction of the Lagrange multipliers. The coupling algo-
rithms are built by ensuring the zero value at the large time scale
of the interface pseudo-energy involved in the generalized
energy method. The derived coupling algorithms can be con-
sidered as Hybrid Asynchronous Time Integrator (HATI) enabling
to couple any Newmark and α schemes, while maintaining the
stability and the second order of accuracy of the coupled time
integrators [27].

In this paper, the GC method is considered because only
Newmark time integrators are investigated. The unsplit field for-
mulation proposed by Basu and Chopra [14,1,28] is adopted and
resumed in the first section. The second section is devoted to the
coupling algorithm, allowing the use of hybrid multi time step

PMLs in explicit computations. The last section concerns numer-
ical examples including Lamb's test and loaded rigid strips lying on
the surface of homogeneous and layered soils. In this last two
examples, the interest of the proposed approach is highlighted by
dealing with three subdomains with different time integrators
associated with their own time step: explicit soil subdomain sur-
rounded by implicit multi time step PMLs, and coupled with
implicit solid subdomain. Efficiency of the proposed approach is
assessed by comparing time histories of displacements and ener-
gies as well as L2 error norms between the numerical results and
the reference results obtained by a monolithic full explicit analysis
using an extended mesh.

2. Perfectly matched layer

2.1. Strong form of the PML in frequency domain

The PML model used in this work has been developed by Basu
and Chopra [1,14]. It is built using the classical elastodynamic
equations by introducing the complex-valued stretching func-
tions λi. The main idea is to replace the real coordinates xi with
the complex ones xi- ~xi : R-C. The complex coordinates are
defined by:

∂ ~xi
∂xi

¼ λiðxiÞ ¼ 1þ f ei ðxiÞ� i
f pi ðxiÞ
bks

ð1Þ

where b denotes the characteristic length of the physical pro-
blem, ks ¼ ω

cs
is the wavenumber and cs is the S-wave velocity. The

real-valued positive functions fi
e and fi

p vanish at the interface
between the PML and the physical domain so that the unphy-
sical PML perfectly matches the physical domain. The damping
function fi

p serves to attenuate the propagating waves in the xi
direction, whereas the damping function fi

e attenuates the eva-
nescent waves. In Eq. (1), the dependence of the complex term
on the factor iω allows for an easy application of the inverse
Fourier transform when expressing the PML in the time domain,
resulting in a PML formulation independent on the frequency. In
other words, all the frequencies are damped out in the
same way.

The PML formulation is obtained by modifying the governing
equations defined in the frequency domain. The classical strong
form of the equation of motion for a homogeneous isotropic
medium under the plane strain assumption is written by sub-
stituting xi by ~xi as follows:

P
j

1
λjðxjÞ

∂σij

∂xj
¼ �ω2ρuj

σij ¼
P

k;lCijklεij

εij ¼
1
2

1
λjðxjÞ

∂ui

∂xj
þ 1
λiðxiÞ

∂uj

∂xi

� �

8>>>>>><
>>>>>>:

ð2Þ

where Cijkl are the components of the elastic constitutive tensor.

2.2. Strong form of the PML in time domain

Before writing the governing equations of the PML in time
domain, we introduce the following notations for the PML region:
ΩPML is the region of the PML, bounded by the ΓPML ¼ΓD

PMLþΓN
PML,

where ΓD
PML \ ΓN

PML ¼∅, defining decomposition of the boundary
between Dirichlet and Neumann conditions. In addition, g

N
denotes the prescribed tractions on ΓPML

N and J ¼ ½0; T � is the time
interval of interest. Thanks to the introduction of the stretching
functions expressed in Eq. (1), the inverse Fourier transform can
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