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a b s t r a c t

The problem of shakedown analysis is considered. The mathematical programming formulations of limit
and incremental elastoplastic analysis are first briefly reviewed and a convenient standard form for
shakedown analysis is then suggested. This standard form can formally be viewed as a problem of limit
analysis. In this way, two different solution approaches are applicable: either the problem can be solved
directly using general optimization methods or the problem can be converted into an equivalent ficti-
tious incremental elastoplastic problem and solved as such. We further show that this result holds in
general for arbitrary convex mathematical programs. Thus, all the methods and techniques developed for
elastoplasticity are in principle applicable to general convex programming. For the solution of shake-
down problems we employ a version of the well-known implicit solution procedure in combination with
a number of equally well-known techniques from general optimization theory. The resulting algorithm
enables an efficient and robust treatment of cone-shaped yield constraints of the Drucker–Prager type.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Shakedown analysis is well-established as a tool for assessing
the safety factor against instantaneous plastic collapse, fatigue and
excessive accumulated strains in structures subjected to cyclic
loading [1–4]. Typically, the task is to find the factor by which a
given set of cyclic loads can be magnified without the structure
suffering any of the above mentioned types of failure. This factor
can be assessed using either the static (lower bound) or the
kinematic (upper bound) shakedown theorem. When formulated
numerically the shakedown theorems generate large, nonlinear
optimization problems that can be solved using general optimi-
zation methods [5–10]. Alternatively, more specialized procedures
applicable only to the problem of shakedown analysis, and often
also only to a limited class of yield criteria, can be employed.
Examples of these latter methods include the so–called linear
matching method of Ponter et al. [11,12] and the path-following
procedure proposed by Casciaro and Garcea [13] and Garcea [14].

With the efficiency that general purpose optimization methods
have attained over the last few decades these would seem more
attractive than the latter type of methods. However, despite very
significant advances in the field of applied optimization, there are
still a number of outstanding issues. Indeed, although problems

containing hundreds of thousands of variables are now routinely
solved in many fields of engineering, science, and economics, the
current state-of-the-art methods are still suffer from a certain
degree of problem dependence and often require ‘tuning’ for a
given application. This tuning includes rules for initializing and
updating key algorithmic parameters and is to a large extent car-
ried out on the basis of experience. Therefore, in the continued
application of a given algorithm to different classes of problems, or
even to different problems within the same class, one will even-
tually encounter difficulties with convergence. More seriously,
however, is it often not obvious how to improve the robustness of
a given optimization algorithm, even at the expense of efficiency,
and the most common remedy for convergence difficulties is to
adjust one or more algorithmic parameters and rerun the problem.
Thus, although many modern optimization algorithms are indeed
powerful tools, their use as ‘black boxes’ is still somewhat
problematic.

This situation is in some sense analogous to the one in non-
linear finite element analysis, where it is also well-known that
convergence difficulties may occur. Using appropriate physical
insight, these difficulties can frequently be alleviated in an intui-
tively rational manner. In elastoplasticity, for example, the obvious
remedy to convergence difficulties is to reduce the magnitude of
the load step. Although it is hard to produce a rigorous mathe-
matical proof that this does indeed improve the likelihood of
convergence, the approach is well-established in practice and for
most problems actually works.
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It is well-known that the ultimate load of an elastoplastic
structure discretized by conventional displacement finite elements
can be found in two ways: either by performing a step-by-step
elastoplastic analysis up to the point of incipient collapse or, more
directly, by maximizing the magnitude of the external loads sub-
ject to discrete equilibrium and yield constraints. There are many
advantages of the latter approach, but also the significant draw-
back that potential convergence difficulties may be hard to address
in a rational and systematic manner. On the other hand, if the
former method of solution is chosen, convergence is virtually
guaranteed. That is, very small load steps, local substepping, line
searches, and so on, may be required, but eventually the point of
collapse will be reached.

These facts have motivated a closer look at the links between
convex programming and certain problems of nonlinear finite
element analysis, in particular incremental elastoplastic analysis.
More precisely, we pose the question: can the step-by-step solu-
tion procedure commonly used for elastoplasticity be generalized
to arbitrary convex optimization problems? As will be shown in
the following, the answer to this question is affirmative. To
demonstrate the point we consider the problem of shakedown
analysis where there is no physical incremental counterpart as in
the case of limit analysis/elastoplasticity. The resulting algorithm is
in many ways similar to the one of Casciaro and Garcea [13] and
Garcea [14] although there are also some notable differences, not
least concerning the generality of the overall approach.

The paper is organized as follows. In Section 2 we give a brief
summary of the governing equations and their discretization and a
relevant mathematical program is formulated. It is then shown in
Section 3 that all convex programming problems can be cast in a
form which is identical to the one commonly used for rigid-plastic
limit analysis. By way of this insight two different solution
approaches suggest themselves naturally: either the problem can
be solved directly using general optimization methods, or the
problem can be solved in a step-by-step fashion as in done in
elastoplasticity. That is, instead of solving a given convex program
directly, a certain amount of ‘elasticity’ can be added and the
problem can then be solved by tracing the fictitious load–dis-
placement curve until ‘collapse’, i.e. until no further increase in the
objective function is possible. As such, any of the numerous
methods traditionally employed for elastoplasticity are applicable.
Similarly, all the procedures developed to increase robustness and/
or efficiency, such as automatic load step selection, can be applied
in an already manner. Next, in Section 4, a convenient standard
form of shakedown analysis is given and the corresponding ficti-
tious incremental elastoplastic problem is derived. We here
emphasize that this latter problem is a standard single-surface
problem, in contrast to the multi-surface formulation employed by
Casciaro and Garcea [13] and Garcea [14]. Also, the formulation is
quite general and not restricted to any particular type of yield
criterion. However, following the trend in optimization of
designing efficient algorithms for more specialized problems, we
deal specifically with linear-quadratic yield constraints of the
Drucker–Prager type in Section 5. In Section 6 the solution algo-
rithm is presented. This algorithm is essentially an adaptation of
the well-known implicit procedure of Simo and Taylor [15,16].
Some implementation issues particular to shakedown analysis are
discussed. Finally, in Section 7 a number of test examples are
solved and comparisons are made with a conventional state-of-
the-art conic programming optimizer before conclusions are
drawn in Section 8.

2. Shakedown analysis

In the following, the static theorem of shakedown analysis is
briefly reviewed and then used as a basis for the finite element
discretization.

Consider a polyhedral load domain defined by L vertices. The
elastic stresses corresponding to each of these vertices are denoted
χ kðxÞ; k¼ 1;…; L. All possible modes of plastic failure are then
prevented if there exists a residual stress field ρðxÞ such that

∇TρðxÞ ¼ 0 8xAΩ

nTρðxÞ ¼ 0 8xAΓρ

f ðρðxÞþαχ kðxÞ; xÞr0 8ðx; kÞAΩ� L ð1Þ
where x is the spatial coordinate, Ω is the spatial domain under
consideration, Γρ is the unsupported part of the boundary, and
L¼ ð1; LÞ is the load domain. We assume an elastic-perfectly
plastic behavior described by the yield function f and an asso-
ciated flow rule. In (1), ∇ is a matrix of linear differential operators.
For a two dimensional continuum ∇T is given by

∇T ¼
∂=∂x 0 ∂=∂y
0 ∂=∂y ∂=∂x

" #

If the above conditions are fulfilled exactly and the elastic stresses
are the exact ones, the multiplier α will be a lower bound to the
true elastic shakedown multiplier. Thus, we seek to maximize α
subject to the above constraints.

2.1. Finite element discretization

The equilibrium constraints can be enforced weakly asZ
Ω
uT∇TρdΩ¼ 0 ð2Þ

where u are arbitrary (virtual) displacement fields fulfilling the
kinematic boundary conditions. Integration by parts givesZ
Ω
ρT∇udΩ�

Z
Γρ

uTnTρdΓ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ 0 by ð1Þ2

¼ 0 ð3Þ

The residual stress and displacement fields are approximated by

ρ�NσðxÞρh; u�NuðxÞuh ð4Þ
where NσðxÞ=NuðxÞ contains the stress/displacement interpolation
functions, ρh is the nodal stress vector and uh the nodal dis-
placements vector. The discrete weak equilibrium condition reads

BTρ¼ 0; BT ¼
Z
Ω
NT

u∇
TNσdΩ ð5Þ

where superscripts h have been dropped so that ρ are the discrete
nodal stresses.

2.2. Mathematical program

With the equilibrium constraints discretized a fully discrete
mathematical programming formulation is obtained by enforcing
the yield conditions at a finite number of points, typically the
stress nodes, so that the task is to solve

maximize α

subject to BTρ¼ 0

f jðρjþαχ j;kÞr0 8ðj; kÞAS � L ð6Þ

where S ¼ ð1; SÞ with S being the total number of stress points
(Gauss points) so that ρ¼ ðρ1;…;ρSÞT with each subvector ρI being
given by ρI ¼ ðρx;ρy;…;ρyzÞT.
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