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a b s t r a c t

In this article, we introduce a new numerical method for identifying mechanical parameters of hyper-
elastic materials in a dynamic framework. Using a Finite Element Model Updating (FEMU) procedure, we
propose a new cost function family. The goal is to avoid the use of a random speckle in association with a
Digital Image Correlation (DIC) tool that are both needed when a cost function based on full displace-
ment fields is used. The experimental data consist in a set of images. The developed method then uses a
simple segmentation of these images without requiring any DIC procedure and associated random
speckle technique. This advantage is made possible through the use of a new cost function based on
geometry quantities. Examples based on synthetic data illustrate the performance of the proposed
method on transient dynamics problems where the flow of information can be very important.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In a design study, engineers need information on the
mechanical characteristics of the used material. To that end,
standardized tests are performed on a sample of the considered
material. In this article, we are interested in identification
methods based on the use of contactless measurements. In that
context, a very popular technique is Digital Image Correlation
method (DIC) [22] that allows us to obtain the displacement
fields: applying a random speckle on the specimen and the
different images taken during the test are compared to lead to a
full displacement field.

Starting from the displacement fields, different methods
have been developed in mechanical engineering to identify
material parameters. A review is presented in [2]. Among the
classical methods, the Constitutive Equation Gap Method
(CEGM) [10,5], the Virtual Field Method (VFM) [11,3,12], the
Equilibrium Gap Method (EGM) [6], the Reciprocity Gap Method
(RGM) [13] can be mentioned. A very large amount of works are
also based on the Finite Element Method Updating (FEMU)
principle [14,7] applied in the specific field of dynamics [16].
The method used in this work relies on this FEMU principle: the
results of a finite element model are compared to those
extracted from images taken during the test.

Major problems are highlighted when random speckle in
combination with DIC is used. The first one comes from the rea-
lization of the random texture itself whose quality largely depends
on the speckle resolution and the resulting contrast. Interesting
works are based on goal-oriented filtering technique in which data
are combined into new output fields which are strongly correlated
with specific quantities of interest [15]. The second problem comes
from the DIC and the calculation cost it generates, especially when
the number of images to be processed increases sharply. The
intrinsic errors related to the DIC can also lead to difficulties, see
[1,19,4].

We propose in this article to use geometric quantities (area and
second moment of area) as base of the cost function for updating
the finite element model. The proposed work thus consists in
studying a variant of the FEMU for identify simple behaviors.
Tracking random speckle is replaced by a simple detection of the
specimen shape in the scene. DIC is therefore replaced by a simple
segmentation of the picture easier to implement and much less
CPU and memory consuming.

In this work, all data are synthetic. This makes it possible to
check the accuracy of the developed method. To its quality, the
method is compared to a classical displacement based cost func-
tion. We show the developed method is an interesting proposal for
simple behaviors.

The paper is organized as follows: in Section 2, we the problem
is defined. Section 3 is dedicated to the presentation of the pro-
posed FEMU based identification method. Sections 4–6 present the
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results obtained on numerical tests, and carefully study the effect
of various acquisition parameters that could potentially modify the
precision.

2. Problem definition

Let us consider θ¼ ðθ1;…;θnÞ the set of parameters introduced
in the constitutive relation of the material defined by:

S ¼ ∂WðE;θÞ
∂E

ð1Þ

where S is the second Piola–Kirchhoff stress tensor, E is the
Green–Lagrange strain tensor. W is the strain energy density
function and depends of material parameters θ.

The mechanical problem is defined considering large defor-
mations in dynamic framework and possible contacts. Further-
more, the material studied is supposed to be isotropic, homo-
geneous and elastic. Thus, we define the set of equations used in
the proposed method of identification.

2.1. Equations of the problem

As shown in Fig. 1, the specimen may be represented as a
closed subspace of R2, denoted Ω, and its boundary ∂Ω on which
one defines the partition:

∂Ω¼Γu [ Γσ [ Γc;

∅¼Γu \ Γσ ¼Γσ \ Γc ¼Γu [ Γc; ð2Þ
where the displacements are imposed on Γu, the external forces
are imposed on Γσ and Γc is a potential area of contact.

The study is made on the time interval τ¼ ½0; tf �.
In addition of the constitutive law (1) and within the total

Lagrangian formulation, the physical problem is modeled by a set
of relationships involving spatio-temporal quantities defined on
Ω� τ:

� local equilibrium equations:

DivPþb¼ ρ €u in Ω� τ ð3Þ
where P is the first Piola–Kirchhoff stress tensor, b represents
the body forces, ρ is the density of the material and €u is the
acceleration vector.

� Neumann boundary conditions:

P:N0 ¼ Td on Γσ � τ ð4Þ

where Td is the traction imposed to small surface dS and N0 its
normal vector.

� Dirichlet boundary conditions:

u¼ ud on Γu � τ ð5Þ

� Unilateral contact conditions:

gZ0 rnZ0 and g � rn ¼ 0 on Γc ð6Þ

where g is the gap between the solid and the obstacle and rn is the
contact reaction force acting along the obstacle outward normal. In
this study, the contact is considered without friction.

2.2. Constitutive relations

In this work we use two models of hyper-elastic behavior of
which we briefly present the main elements.

� Saint-Venant Kirchhoff strain energy density function

In this first case, we identify 2 parameters, θ¼ ðE;νÞ, respec-
tively the Young modulus and Poisson's ratio of the considered
material. The strain energy density function, WðE; ðE;νÞÞ, is defined
as a function of E and θ¼ ðE;νÞ are parameters:

W E; E;νð Þð Þ ¼ Eν
2 1þνð Þ 1�2νð Þðtr Eð ÞÞ2þ E

2 1þνð Þtr E2
� �

ð7Þ

from which we obtain the constitutive relation linking S and E:

S ¼ Eν
1þνð Þ 1�2νð Þtr Eð Þ:Idþ E

1þνð ÞE ð8Þ

where Id is the identity matrix.

� Blatz–Ko strain energy density function

In this second case, one parameter is identified, namely the
shear modulus, θ¼ ðGÞ. For practical reason, the elastic deforma-
tion potential of this second case refers to the invariants of right
Cauchy–Green deformation tensor. The strain energy density
function, WðE; ðE;νÞÞ is defined by as a function of E and θ¼ ðGÞ are
parameters:

wðC;GÞ ¼ G
2

C1

C2
þ2

ffiffiffiffiffiffi
C3

p
�5

� �
¼WðE;GÞ ð9Þ

where

C1 ¼ tr Cð Þ; C2 ¼
1
2

C2
1�tr C2

� �� �
; C3 ¼ detC ð10Þ

Then:

S ¼ ∂WðE;GÞ
∂E

¼ 2
∂wðC;GÞ

∂C
ð11Þ

and we classically obtain the constitutive relation:

SðEÞ ¼ G Jð2EþIdÞ�1�ð2EþIdÞ�2
n o

ð12Þ

where

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2EþIdÞ

p
ð13Þ

Fig. 1. Continuous problem.
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