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A B S T R A C T

Analysis using Cartesian background mesh with the geometry embedded or immersed in the mesh is gaining
popularity. The primary advantage of this approach is that a traditional mesh, which conforms to the geometry,
is not needed. Instead a background mesh that is independent of the geometry and has regular shaped
undistorted elements is used because it is easy to generate automatically. Many methods for imposing Dirichlet
boundary conditions on immerse boundaries have been studied. In this work step boundary method, where the
trial and test functions are weighted using approximate step functions, has been used for imposing Dirichlet
boundary conditions on boundaries that do not have nodes on them. This method has been shown to be effective
for static problems in the past but has not been studied for dynamics. Step boundary method is extended to
modal analysis and modal superposition as well as problems involving base excitation where the Dirichlet
boundary conditions are functions of time. Several test examples are used to verify and validate the method.

1. Introduction

Many modifications to the finite element method (FEM) have been
proposed for avoiding mesh generation or reducing the difficulties
associated with it. A vast amount of literature exits on meshless
methods [1] where nodes are not connected into elements for the
purpose of interpolation or approximation of the field variables. On the
other hand, mesh independent approaches, such as X-FEM [2], use a
background mesh that does not conform to the geometry. In XFEM, the
geometry (curve or surface) representing a crack is embedded in the
mesh and can go through elements. More generally, it is desirable to
have the entire geometry defined independent of the mesh [3], using
equations of the boundaries as defined in solid models created in
computer aided design (CAD) software. The boundaries are surfaces
and curves immersed in the background mesh and may not have nodes
on them. Imposing Dirichlet (or essential) boundary conditions on the
embedded geometry is a key challenge. Popular approaches for
imposing Dirichlet boundary conditions on boundaries without nodes
include the penalty method, Lagrange Multiplier methods and
Nitsche's method. Variations of the Lagrange multiplier approach have
been most widely studied in this context including for constraints on
embedded interfaces. To avoid instability when using the Lagrange
multiplier approach, it is necessary that the field variables and
Lagrange multiplier fields satisfy the inf-sup condition [4] for which
several stabilization strategies have been developed [5–7]. Nitsche's

method has been used for weakly enforcing constraints on embedded
interface problems where stabilization parameters are calculated to
ensure coercivity [8–10]. A related method was developed by Baiges
et al. [11] for imposing Dirichlet boundary conditions where the
stability parameter is independent of the numerical approximation.

Several methods that fall into the category of mesh independent
analysis using a Cartesian mesh with embedded geometry have been
developed and are known by different names such as embedded/
immersed domain method [12], fictitious domain method [13] and
immersed boundary method [14,15]. Finite Cell Method (FCM) [16–
18], uses the fictitious domain approach with high order basis
functions to represent the solution while the geometry is embedded
in this mesh. In the FCM approach, a stiff strip of material along the
boundary has been used to impose boundary conditions and more
recently Nitsche's method has been used to weakly impose boundary
conditions on embedded boundaries [19] where a careful choice of
stabilization parameters yields good convergence. Immersed b-spline
(i-spline) finite element method [20] uses modified b-splines for nodes
near the boundary so that they locally interpolate the test and trial
functions at the boundary and therefore the Dirichlet boundary
conditions can be applied simply by specifying nodal values. The
resulting basis functions are rational functions and, for integration
purposes, local elements that fit the boundary are used. In the present
work we study an implicit boundary method for applying Dirichlet
boundary conditions on immersed boundaries. Kantorovich and Krylov
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[25] originally proposed using implicit equations of the boundary
curves and surfaces to impose boundary conditions by constructing
trial solutions of the form u u x Φ ax x x( ) = ( ) ( ) + ( )h , where Ωx ∈ ,
Φ Ω R: → . Here Φ x( ) = 0 is the implicit equation of the boundary,
u x( )h is a piece-wise interpolation / approximation, a x( ) is a function
whose values match the specified boundary conditions at the bound-
aries and Ω is the volume of the entire domain. This solution
automatically satisfies the Dirichlet boundary condition u a= because
at the boundary Φ x( ) = 0. For arbitrary geometry, it is difficult to
construct implicit equations and therefore R-functions and signed
distance functions [26–30] have been suggested as ways to construct
the required characteristic functions Φ x( ).

To avoid poor convergence and difficulties in quadrature due to
highly nonlinear characteristic functions, we have used a modified form
of the implicit boundary method that uses step functions as the
characteristic function. In the present work, we refer to this variation
of the implicit boundary method as the ‘step boundary method’. It uses
approximate step functions to represent Dirichlet boundaries and has
been shown to be effective at imposing Dirichlet boundary conditions
for many static problems [21–24] when a Cartesian background mesh
is used for the analysis. Approximate step functions have a unit value
inside the domain and transitions to zero over a small distance at the
Dirichlet boundaries. Therefore, only the boundary elements contain-
ing Dirichlet boundaries are affected by this characteristic function. A
background mesh with uniform, undistorted (regular-shaped) elements
is used to construct the piece-wise approximation u x( )h . Therefore
quadrature inaccuracies arising due to distorted elements in conform-
ing meshes can be avoided. The implicit boundary method has also
been applied when approximation schemes that do not have
Kronecker's delta properties, such as B-spline approximations, are
used to build trial and test functions [22,23]. B-spline approximations
have been used in traditional finite element method [25–33] as well as
with isogeometric approach [34–37]. In the isogeometric approach,
both the solution and the geometry are approximated using the same
basis function. In addition to B-Spline basis functions, NURBS and T-
splines have been used as basis function to obtain higher order
approximations, h- and p- refinement as well as k-refinement wherein
the degree of continuity of the solution is raised to improve the solution
quality. Several methods for imposing Dirichlet boundary conditions
for these basis functions have been proposed including the use of
multiple knots at boundary nodes and utilizing constraint equations.
The step boundary method has not been used for isogeometric method
but it is a general approach for imposing boundary conditions that can
be used for isogeometric method and traditional FEM as well.
However, its real benefit is that it can be used with a mesh that does
not have nodes on the boundaries of the analysis domain. It requires
only the equation of the boundary to impose the boundary conditions.
Therefore, it is ideally suited for the immersed boundary approach
where the geometry is embedded in a uniform background mesh. The
geometry of the structure is assumed to be available as equations,
typically from a solid model created in CAD software.

In this work, we extend the step boundary method to structural
dynamics problems solved using modal analysis and modal super-
position. While this method has been found to be effective for static
problems, it has never been tested for vibration problems to study the
accuracy with which natural frequencies can be computed. In addition,
the method is studied here for forced vibration problems and base
excitation problems where the Dirichlet boundary conditions are
functions of time. In Section 2, we summarize how geometry is
represented using parametric equations and how it is used in the
construction of trial and test functions that satisfy the Dirichlet
boundary conditions. The step boundary method is extended to
dynamics in Section 3, where a modified weak form is derived using
trial and test functions described in Section 2. The load vector
corresponding to base excitation is derived in Section 4, where both
primary base excitation and base excitation due to multiple base

motions are discussed. The formulations is validated and studied using
several benchmark examples in Section 5.

2. Geometry and trial function representation

In CAD models [38,39], the geometry of curves and surfaces are
typically represented using parametric equations of the form

υΓ C Ε( ): →i
3 for curves and ξ ηΓ A Ε( , ): →i

3 for surfaces, where Γi is
the position vector of points on the curve or surface, C is the curve that
represents domain in parametric space for curves and A is an area in
the parametric space representing the domain for surfaces. Geometry
of solids is defined using Boundary Representation (B-Rep) models.
For 2D analysis as well as plate or shell analysis, the geometry can be
represented as a face or a collection of faces, often referred to as ‘shell’
in geometric modeling literature. A face is modeled as a bounded
parametric surface whose boundaries are defined using loops. The
loops are defined using a collection of oriented edges that are linked
together to bound a closed region. Strict conventions are used to
facilitate the classification of points on the surface as being inside or
outside the face. For example, the direction of the oriented-edges and
the associated loops are defined such that as one traverses along the
loop in its predefined direction, the inside of the face is to the left. An
oriented-edge is in turn defined by associating it to an edge and
defining its direction as being either the same or the opposite to that of
the edge. The geometry of an edge is a parametric curve and it is
bounded by vertices. The direction of these edges is defined as the
direction in which one would move along the curve as its parameter υ is
increased. The notations used in this paper to describe the geometry of
the structures to be analyzed are briefly discussed here.

Let the parametric surface representing a face be ξ ηΓ A Ε( , ): →i
3

and its boundaries be defined using a set of oriented-edges
υ j nΓ C Ε( ): → , = 1..ij b

3 , where, nb is the number of boundaries and
the domain of the jth boundary curve is υ υ[ , ]j j0 1 . These boundary curves
together define a closed region on the surface that may consist of
multiple closed loops defining an external and any internal boundaries.

Fig. 1 shows two faces representing a shell where each face is
bounded by four oriented-edges. The vertices of the bounding curves
are connected such that the end point of an oriented edge in the loop is
the starting point of the subsequent oriented edge within the same
loop. For 2D and shell-like structures, any point in the volume of the
structure can be denoted as

Fig. 1. Faces representing a plane, shell or boundary of a structure.
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