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A B S T R A C T

This manuscript introduces a new method named Conforming to Interface Structured Adaptive Mesh
Refinement (CISAMR) for the automated finite element modeling of problems with complex morphologies.
The CISAMR transforms a simple structured mesh of quadrilateral elements into a conforming hybrid mesh
composed of quadrilateral and triangular elements with low aspect ratios using a non-iterative algorithm. The
automated construction of the mesh begins with implementing a customized Structured Adaptive Mesh
Refinement (SAMR) algorithm to achieve the desired element size along materials interfaces. A new r-adaptivity
algorithm is then employed to move selected nodes of nonconforming elements to intersection points of their
edges with the interface, followed by the diagonal sub-triangulation of all elements deformed during this process
into conforming sub-triangles. CISAMR does not require relocating the nodes of the background mesh or
creating any new node away from materials interfaces after the completion of the SAMR phase. Further, this
method can easily handle special cases such as intersecting boundaries/interfaces, while ensuring that aspect
ratios of resulting sub-elements are lower than three. A comprehensive discussion is provided on different
aspects of the implementation of CISAMR, followed by several example problems to show its application for
modeling materials with complex microstructures.

1. Introduction

The finite element method (FEM) is one of the most popular
numerical techniques for simulating a wide range of problems in
physics and engineering. However, creating appropriate conforming
finite element (FE) meshes has been a long-standing challenge for
modeling problems with complex morphologies. Significant research
has been carried out to develop robust algorithms for generating
conforming meshes with proper element aspect ratios [1–3].
Amongst methods used in this field we can mention the Delaunay
triangulation algorithms [4], advancing front [5], and Quadtree/Octree
based techniques [6–8].

The Delaunay triangulation method aims at satisfying the criterion
that no mesh node must be placed inside the circumcircle of a triangle,
or the circumsphere of a tetrahedron [4]. Hence, the location of each
node in a Delaunay mesh depends on locations of all its neighboring
nodes, resulting in a non-linear system of equations that must be
solved iteratively; thereby making this technique computationally

expensive for discretizing large-scale problems. Advancing front tech-
niques have been developed to facilitate progressive refinement around
points, surfaces, and sharp corners [9,10,5]. In this method, new
triangular/tetrahedral elements are created in an active front emanat-
ing from specified regions in the domain, which are progressively
advanced to discretize the entire domain.

Quadtree/octree based approaches recursively subdivide quadrilat-
eral and hexahedral background elements to reach a desirable level of
refinement [11,6–8]. Grid points are then relocated to the interface to
create a conforming mesh comprising heavily distorted elements. The
element aspect ratios are improved through subsequent iterative mesh
smoothing. Yerry et al. [11] employed a Laplacian smoothing techni-
que, which relocates interior mesh nodes to the average coordinates of
all its neighboring nodes, by iteratively solving a non-linear system of
equations. An optimization based boundary smoothing was introduced
by Baehmann et al. [7] to enable a better representation of boundaries
and interfaces. Although more computationally expensive, this optimi-
zation based smoothing scheme requires less iterations for the con-
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struction of a high quality conforming mesh.
Octree-based techniques have been implemented in conjunction

with iso-contouring for modeling materials with multiple interfaces
[12–14]. The Marching Cubes algorithm visits each hexahedral cell and
performs triangulation based on sign configurations of its vertices [12],
but has limitations that could lead to the creation of elements with bad
aspect ratios or inaccurate representation of sharp corners of the
interface. The Dual Contouring method, which performs the sub-
triangulation using special minimizer points, can be employed to
address these limitations [13,14]. Liang et al. [14] combined the
Octree method with Dual Contouring to generate high quality trian-
gular and tetrahedral meshes. Zhang et al. [13,15] have used a similar
approach to obtain triangular, quadrilateral, tetrahedral, and hexahe-
dral meshes for problems involving two or more materials interfaces.
However, implementing this method could be computationally de-
manding, as it requires locating normal vectors to materials interfaces
and performing several calculations to locate minimizer points.
Further, subsequent mesh smoothing might be inevitable to obtain
elements with acceptable aspect ratios [15].

Despite the development of such sophisticated mesh generation
algorithms, the complexity and labor cost associated with creating
conforming meshes are still major barriers toward modeling problems
with complex morphologies. This challenge is further magnified in
problems such as design optimization [16] and uncertainty quantifica-
tion [17], which require the construction of multiple FE models
throughout the simulation. The implementation of techniques such as
the hp-adaptive refinement [18–20] and the Arbitrary Eulerian–
Lagrangian (ALE) [21,22] could alleviate the labor cost and computa-
tional burden associated with the mesh generation process. However,
maintaining elements with proper shapes and good aspect ratios, while
minimizing the geometric discretization error, remain to be challenging
tasks in such methods.

To obviate the difficulties associated with the construction of
conforming meshes in the standard FEM, one can implement alter-
native numerical techniques such as the Boundary Element Method
(BEM) [23,24] and Meshfree Methods (MMs) [25–28]. Despite
successful application to simulate certain problems, at lower computa-
tional cost and higher accuracy compared to FE analyses in some cases,
such methods lack the flexibility of the FEM for the treatment of a wide
range of governing equations. For example, the application of the BEM
is limited to problems for which Green's functions can be evaluated
analytically [29].

FE-based methods such as CutFEM [30], eXtended/Generalized
FEM (X/GFEM) [31–34], Interface-enriched Generalized FEM
(IGFEM) [35,36], and Hierarchical Interface-enriched FEM (HIFEM)
[37,38] have also been introduced, which eliminate the requirement for
using meshes that conform to the problem geometry. This is often
achieved by using appropriate enrichment functions for approximating
the field in nonconforming elements to capture weak (gradient)
discontinuities along materials interfaces. Although such methods are
often categorized as mesh-independent techniques, it is often necessary
to subdivide the elements cut by materials interfaces into smaller
conforming sub-elements for numerical quadrature and/or evaluating
the enrichment functions [39,36]. Further, additional treatments are
often necessary to avoid the construction of stiffness matrices with high
condition numbers, and for accurate approximation of the gradient
(e.g., stress concentrations) along the interface [40,41,37]. The
Conformal Decomposition FEM (CDFEM) [42,43] also subdivides the
elements cut by the interface into smaller conforming sub-elements,
although unlike X/GFEM does not use enrichment functions to capture
weak discontinuities. Instead, it replaces the nonconforming back-

ground elements with the resulting conforming sub-elements and
approximates the field using the standard FEM. However, the arbitrary
aspect ratios of such elements could lead to significant errors in
approximating local phenomena governed by the gradient field, such
as the stress and damage initiation, as well as resulting in a high
condition number for the stiffness matrix.

In this manuscript, we introduce a Conforming to Interface
Structured Adaptive Mesh Refinement (CISAMR) technique for the
automated modeling of problems with complex morphologies. CISAMR
transforms a structured mesh into a high quality conforming mesh
composed of quadrilateral and triangular elements with low aspect
ratios. What distinguishes this technique from existing methods in the
literature is the ability to control the aspect ratios of resulting elements
for all possible case scenarios, including materials interfaces that are in
close proximity, intersecting with one another, or located in the vicinity
of the domain boundaries using a non-iterative algorithm. To achieve
this, CISAMR integrates customized versions of three techniques,
namely the Structured Adaptive Mesh Refinement (SAMR) [44–46]
of the background mesh, r-adaptivity [47] of the nodes of elements cut
by materials interfaces, and sub-triangulation of these elements to
create an appropriate conforming mesh.

While the computational cost associated with creating a conforming
mesh in CISAMR is comparable to the process of creating integration
(children) sub-elements in enriched FE-based methods, CISAMR
ensures that aspect ratios of these children elements are lower than
three. Thus, a high quality conforming mesh is generated without the
need for an iterative smoothing process, which is used in several of
mesh generation algorithms [6–8,15]. Further, CISAMR does not
relocate the nodes of the background mesh away from materials
interface; thereby preserves the main structure of this grid. This
enables handling multiple non-intersecting and even intersecting
materials interfaces using a non-iterative algorithm. Moreover,
although not addressed in the numerical examples presented in this
work, CISAMR highly facilitates the simulation of moving boundary
problems, as the background mesh is modified locally to adapt to the
interface/boundary morphology. Therefore, similar to X/GFEM
[48,49], mapping the solution using an L2-projection scheme between
the current and updated meshes is limited to the elements cut by the
interface. This feature not only reduces the computational cost but also
improves the accuracy by mapping super-convergent nodal values of
the solution for majority of the nodes. It must be noted that although
the focus of this article is on introducing the CISAMR algorithm for
modeling 2D problems, there is no inherent limitation for expanding
this method to 3D. However, the computational geometry aspects
involved in the implementation of 3D CISAMR, including compatibility
of sub-element surfaces, are out of the scope of the current manuscript.

The remainder of this article is structured as follows: In Section 2
we present the governing equations for simulating linear elasticity and
continuum damage problems. The CISAMR algorithm is introduced in
Section 3, followed by discussing required considerations for the
treatment of special cases such as intersecting materials interfaces in
Section 4. Different algorithmic aspects of the CISAMR implementa-
tion, together with a detailed comparison with other mesh generation
algorithms and mesh-independent methods such as IGFEM and X/
GFEM are provided in Section 5. Four numerical examples are
provided in Section 6 to shed light on the accuracy and convergence
of CISAMR and demonstrate its application for modeling materials
with complex microstructures. Final concluding remarks are presented
in Section 7.
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