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A B S T R A C T

A path-following method that is based on controlling plastic dissipation or plastic work in an inelastic solid or
structure is presented. It can be effective for highly nonlinear materially and geometrically problems. In
particular, it can be applied for elasto-plastic problems where the standard arc-length methods fail, or to avoid
artificial and undesirable elastic unloading of a complete solid or structure during the computation. The
essential ingredients, the plastic dissipation and the plastic work based constraint equations, are derived by
using either explicit or implicit pseudo-time step integration. These constraint equations are valid for
geometrically nonlinear small strain elasto-plasticity with hardening. Their implementation in the framework
of the path-following method is described. Several numerical examples are presented in order to illustrate very
satisfying performance of the derived path-following method. It performed very well for some challenging shell
problems.

1. Introduction

The most used path-following method in the nonlinear finite
element analysis of solids and structures is probably the Crisfield's
cylindrical arc-length, see e.g. [10,11,9]. Other path-following methods
are also used, like those originally presented in [28] (this one is
implemented in commercial finite element code Abaqus [1]) and [27].
A recent review on rather standard path-following methods, including
the above mentioned, can be found in [29]. The standard path-
following methods can be successfully applied for solving many
geometrically nonlinear problems as well as many types of geometri-
cally and materially nonlinear problems. However, they might fail
when computing a particularly demanding nonlinear problem, e.g. a
problem related to structural collapse due to material failure. For this
kind of problems, several goal-oriented path-following methods were
proposed, see e.g. [19,2,20,26,3] and references therein. A specific
path-following method is usually designed for a specific class of
problems.

The characteristic part of any path-following method is the
constraint equation. Recently, Verhoosel et al. [33] presented con-
straint equations that are controlling energy dissipation in an inelastic
material. In [33], several constraint equations were presented, in
particular for geometrically linear and geometrically nonlinear elasto-
damage, and geometrically linear elasto-plasticity (without hardening).

In this work, we extent the ideas of Verhoosel et al. [33] to

geometrically nonlinear elasto-plasticity. In particular, we derive
explicit and implicit constraint equations that control plastic dissipa-
tion for small strain elasto-plasticity with hardening (see e.g. [21,31]
for details on computational elasto-plasticity). The implementation of
an explicit constraint equation in the framework of the consistently
linearized path-following method, see e.g. [30,17,35], is rather
straightforward. Namely, all the ingredients of the explicit constraint
equation are already computed in the course of geometrically nonlinear
elasto-plastic analysis, e.g. [13], [34]. On the other hand, an implicit
constraint equation is much more complex and its implementation is
quite demanding.

An application of here presented formulations to embedded dis-
continuity finite elements, e.g. [14,15,22,23], that are used to model
material failures, are presented in [8].

The rest of the paper is organized as follows. In Section, 2 the path-
following method framework is presented. In Section 3, several plastic
dissipation based constraint equations are derived by using an explicit
or implicit integration in the pseudo-time step. Section 4 provides
illustrative numerical examples. Conclusions are drawn in Section 5.

2. The framework of the path-following methods

In the nonlinear finite element method for solids and structures,
one has to solve the following system of nonlinear equations
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t λ t t λ tR u R u f 0( ( ), ( )) = ( ( )) − ( ( )) =extint (1)

where Rint and f ext are vectors of internal and external (equivalent)
nodal forces (and moments, if they are present in the formulation),
respectively, u is vector of unknown nodal displacements (and rota-
tions, if they are present in the formulation, see e.g. [6]), λ is the load
factor, and t ≥ 0 is a monotonically increasing parameter that will be
called the pseudo-time. In many practical cases, the system of
equations (1) is possible to solve only with an additional constraint
equation

g t t Δt λ t λ t Δt(u( ) − u( − ), ( ) − ( − )) = 0 (2)

where Δ represents a small (incremental) change. Solving (1) and (2)
simultaneously is called the path-following method or the arc-length
method if (2) has a cylindrical or spherical form, see e.g. [10,9]. The
solution of (1) and (2) is searched for at the discrete pseudo-time
points t t t t t0 = , , … , , , … ,n n final0 1 +1 . Let us assume that config-
uration at tn is known (the notation a t a( ) =n n will be used in what
follows) and defined by the pair t λ t λ{u( ), ( )} = {u , }n n n n . At searching for
the next configuration at t t Δt= +n n n+1 , we additively decompose un+1
and λn+1 as Δu = u + un n n+1 and λ λ Δλ= +n n n+1 , where Δun and Δλn are
the increments of the displacement vector and the load vector,
respectively. Eqs. (1) and (2) can be rewritten for tn+1 as

λ Δ Δλ g Δ ΔλR u u 0 u( , ; , ) = , ( , ) = 0n n n n n n n n+1 +1 (3)

where Δun and Δλn are the unknowns. The solution of (3) is searched
for iteratively by the Newton-Raphson method. At an iteration i, the
following linear system has to be solved
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can be effectively solved by the bordering algorithm, see e.g. [35] for
details. When the iteration loop ends due to fulfilment of a convergence
criterion, the converged incremental values Δun and Δλn are obtained.
The configuration λ{u , }n n+1 +1 at tn+1 becomes known and the search for
the solution at the next pseudo-time point can start.

The above framework is valid for any constraint function gn+1 in (3).
However, the robustness and efficiency of the path-following method
depend crucially on the specific form of this function. In what follows,
we will elaborate for the case when gn+1 controls the incremental
structural plastic dissipation when elasto-plastic or rigid-plastic mate-
rial models are used, see e.g. [10,21,31] for such models.

3. Plastic dissipation constraint equation for geometrically
nonlinear elasto-plasticity

In this section, we will present and discuss several possibilities for
deriving the constraint equation g = 0n+1 , see (3), which will control
incremental structural plastic dissipation. In particular, we will derive
the plastic dissipation constraint equation by two different approaches
(called version 1 and version 2) and we will show in Section 3.3 that the
final results of those two approaches are equivalent.

3.1. Explicit form of plastic dissipation constraint equation – version
1

The rate of plastic dissipation in an elasto-plastic solid or structure
can be defined as D P Ψ̇ = ̇ − ̇ , where P ̇ is the pseudo-time rate of the
applied work, andΨ ̇ is the pseudo-time rate of the thermodynamic (i.e.
the free energy) potential for plasticity (the dot denotes the derivative
with respect to the pseudo-time). For the discretized solid or structure

in the framework of the geometrically nonlinear and inelastic finite
element method, P ̇ can be written as

∫∑P dV λS E f u f u̇ = ̇ = ̇ = ^ ̇
e V

T ext T ext T, ,

e
(5)

where e denotes a finite element of the mesh, S and E are vectors
comprising the 2nd Piola-Kirchhoff stresses and the Green-Lagrange
strains, respectively, and Ve is the initial volume of the element. It was

assumed in (5) that the external forces can be expressed as λf = f̂ext ext
,

where f̂
ext

is a fixed pattern of nodal forces. The free energy potential of
a solid or structure, based on the St. Venant-Kirchhoff elasticity and
plasticity with linear isotropic hardening, is Ψ U H= + , where the
stored energy due to elastic deformations is

∫ ∫∑ ∑U dV dVE DE S D S= 1
2

= 1
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and the stored energy due to the material hardening is

∫∑H K ξ dV= 1
2e V

h h
2

e
(7)

Here, E E E= −el p is vector of elastic strains, Ep is vector of plastic
strains, D is symmetric constitutive matrix that relates stresses with
elastic strains S DE= el, Kh is hardening modulus, and ξh is strain-like
variable that controls linear isotropic hardening. For any other type of
hardening, H in (7) has to be changed accordingly. Differentiation ofU
with respect to the pseudo-time gives
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where Cep and B denote the consistent symmetric elasto-plastic tangent
modulus and the strain-displacement matrix, respectively, and A is the
finite element mesh assembly operator. The following relations were
used in (8):: Ṡ = C Ėep , E Bu̇ = ̇e, and Au u̇ = ̇

e
e, where ue is vector of

element nodal displacements. Differentiation of H with respect to the
pseudo-time yields
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Let us use the forward Euler pseudo-time step in order to express
the plastic dissipation at the pseudo-time point tn+1, i.e.
D D D Δt= + ̇n n n n+1 , where Δt t t= −n n n+1 . Let us further define the
following constraint equation:

g D D τ g D Δt τ= − − = 0 ⇒ = ̇ − = 0n n n n n n n n+1 +1 +1 (10)

where τn is a predefined (required) value of plastic dissipation at
pseudo-time step t t[ , ]n n+1 . By concluding that
D P Ψ P U Ḣ = ̇ − ̇ = ̇ − ̇ − ̇n n n n n n and by using (5), (8) and (9), the Eq.
(10) can be rewritten as

g D Δt τ Δ λ τu f f= ̇ − = ( ^ − *) − = 0n n n n n
T

n
ext

n n+1 (11)

Here, Δ Δtu u= ̇n n n is the current iterative guess of incremental
displacements (iterative index i is omitted) and
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It follows from (11) and (12) that the derivatives needed in (4) are

g = 0n λ+1, and g λ f f= ^ − *n n
ext

nu+1, , since gn+1 is not a function of Δλn.
Most of the terms of f*n in (12) are needed for the elasto-plastic analysis
and can be readily used to compute (11) and its derivatives. An
exception is ξ u(∂ /∂ )h

e
n, which can be obtained by using the elasto-

plastic constitutive relations.
In practice, one has to compute f*n after the last iteration at tn or

before the first iteration at tn+1 and use it when iterating for config-
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