
Applied Soft Computing 11 (2011) 4677–4691

Contents lists available at ScienceDirect

Applied  Soft  Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

Enhanced  WiFi  localization  system  based  on  Soft  Computing  techniques  to  deal
with  small-scale  variations  in  wireless  sensors
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a  b  s  t  r  a  c  t

The  framework  of this  paper  is  robot  localization  inside  buildings  by means  of wireless  localization
systems.  Such  kind  of  systems  make  use  of  the  Wireless  Fidelity  (WiFi)  signal  strength  sensors  which  are
becoming more  and  more  useful  in the  localization  stage  of  several  robotic  platforms.  Robot  localization
is  usually  made  up of  two phases:  training  and  estimation  stages.  In the  former,  WiFi  signal  strength  of
all  visible  Access  Points  (APs)  are  collected  and  stored  in  a database  or WiFi  map.  In the  latter,  the  signal
strengths  received  from  all APs  at a certain  position  are  compared  with  the WiFi  map  to estimate  the
robot  location.  Hence,  WiFi  localization  systems  exploit  the  well-known  path  loss  propagation  model  due
to large-scale  variations  of  WiFi  signal  to  determine  how  closer  the  robot  is  to  a certain  AP. Unfortunately,
there  is  another  kind  of  signal  variations  called  small-scale  variations  that  have  to  be considered.  They
appear  when  robots  move  under  the  wavelength  �. In consequence,  a chaotic  noise  is  added  to  the
signal  strength  measure  yielding  a lot  of  uncertainty  that  should  be handled  by  the localization  model.
While  lateral  and orientation  errors  in  the  robot  positioning  stage  are  well  studied  and  they  remain
under  control  thanks  to  the  use  of  robust  low-level  controllers,  more  studies  are  needed  when  dealing
with  small-scale  variations.  Moreover,  if the robot  can  not  use  a  robust  low-level  controller  because,
for example,  the  environment  is  not  organized  in  perpendicular  corridors,  then  lateral  and  orientation
errors  can  be  significantly  increased  yielding  a bad  global  localization  and  navigation  performance.  The
main goal  of  this  work  is  to strengthen  the  localization  stage  of  our  previous  WiFi  Partially  Observable
Markov  Decision  Process  (POMDP)  Navigation  System  with  the aim  of  dealing  effectively  with  small-scale
variations.  In  addition,  looking  for  the  applicability  of  our system  to a wider  variety  of  environments,  we
relax  the  necessity  of having  a robust  low-level  controller.  To  do  that,  this  paper  proposes  the  use of a
Soft Computing  based  system  to tackle  with  the  uncertainty  related  to both  the  small-scale  variations
and  the  lack of a robust  low-level  controller.  The  proposed  system  is  actually  implemented  in  the  form
of a  Fuzzy  Rule-based  System  and  it has  been  evaluated  in two real test-beds  and  robotic  platforms.
Experimental  results  show  how  our  system  is easily  adaptable  to  new  environments  where  classical
localization  techniques  can  not  be applied  since  the  AP  physical  location  is  unknown.

© 2011  Elsevier  B.V.  All rights  reserved.

1. Introduction

Several applications like surveillance tasks require a priori
knowledge of the user location. This position can be determined
by the user’s device or by the environment itself. By knowing the
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user position it is possible to interact with him, guiding it through
the environment and implementing some tasks depending on the
area of interest.

Localization is currently applied at several areas. For instance,
there are projects that use localization systems in hospitals which
can locate doctors and equipment. Other systems are used for med-
ical assistance [21], inventory control at warehouses, robotics [40],
etc.

In the last years, applications of localization systems are grow-
ing by means of using different technologies [27]. A great example
is GPS (Global Positioning System) [12], which is the most extended
technology for devices localization. As an example of the localiza-
tion importance car drivers usually use GPS to be guided through

1568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2011.07.015

dx.doi.org/10.1016/j.asoc.2011.07.015
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:jose.alonso@softcomputing.es
mailto:mocana@depeca.uah.es
mailto:nhernandez@depeca.uah.es
mailto:fherranz@depeca.uah.es
mailto:allamazares@depeca.uah.es
mailto:sotelo@aut.uah.es
mailto:bergasa@depeca.uah.es
mailto:luis.magdalena@softcomputing.es
dx.doi.org/10.1016/j.asoc.2011.07.015


4678 J.M. Alonso et al. / Applied Soft Computing 11 (2011) 4677–4691

cities. This technology can locate devices with an error that varies
from centimeters to one hundred meters, but it does not work prop-
erly in indoor environments or even in cities with high buildings.

Thus, it is necessary to find a complementary system for such
environments. There are some proposals for indoor localization
using infrared [42], computer vision [19], ultrasound [34], laser [7],
radio frequency (RF) [6],  or even cellular communication [33] based
systems. Moreover, there is an increasing interest in WiFi local-
ization for these environments using different algorithms, even
looking for complementary characteristics of both GPS (outdoor
environments) and WiFi (indoor environments) [13].

One of the main advantages of WiFi technology is its quickly
growing degree of coverage. There are WiFi Access Points (APs) in
most public buildings like hospitals, libraries, universities, muse-
ums, etc. In addition, measuring the WiFi signal level (without
transmitting-receiving data) is free even for private WiFi networks.
Consequently, WiFi technology is a good choice for global indoor
localization systems.

WiFi localization systems use 802.11b/g network infrastructure
to estimate a device position. This fact makes WiFi localization
systems appropriate to be used in indoor environments where
traditional techniques do not work properly. With the aim of esti-
mating a device position, a WiFi localization system measures and
processes the received signal level (SL) from each AP by means of
a WiFi interface. Notice that, SL depends on the distance and the
obstacles between APs and the receiver. Looking for indoor local-
ization, the so-called signal strength approaches are very attractive
because they can be applied to wireless networks without needing
additional specific hardware [11].

There are two main techniques to estimate an unknown
position: deterministic and probabilistic. In the first one, the envi-
ronment is usually divided into cells and the position is obtained
in the estimation stage comparing the measures with the stored
pattern [6,44].  On the other hand, probabilistic techniques keep a
probabilistic distribution over all positions [15,20].  The last tech-
nique gets a better accuracy but with a higher computational
cost.

In work [24], the authors estimate the distance to each AP using
only odometric calculus and the received SL. They consider trilat-
eration with a propagation model and also a probabilistic approach
that applies the Bayes rule to accumulate localization probability.
Unfortunately, RF signal is affected by reflection, refraction and
diffraction in indoor environments. This effect, known as multipath
effect, turns the SL into a complex function of the distance [11]. In
addition, classical trilateration algorithms can not be applied when
the exact AP physical location is unknown.

Looking for a solution to this problem, authors of [6] proposed a
WiFi localization system based on a priori radio map, which stored
the received SL of each AP belonging to interest locations. This sys-
tem has two stages: training and estimation stages. In the first one,
a manual radio map  is built. While in the estimation stage a vector
with received SL of each AP is created and compared with the radio
map to obtain the estimated position.

Notice that WiFi technology works at a 2.4 GHz frequency, which
is closer to the water resonant frequency, therefore SL is affected
by so many variations. One of these variations, studied by the
authors in a previous work [40], is the small-scale one and it occurs
when the robot moves in a small distance under the wavelength
� = 12.5 cm.  As a result, there are significant changes in the average
SL and make difficult to estimate the correct location because they
can be up to 10 dBm around the same position. To deal with this,
authors proposed the use of a robust low-level controller which
integrates WiFi and ultrasound measures in a global navigation sys-
tem. It is able to handle small-scale problems but only when the
environment is organized in perpendicular corridors. Otherwise,
the uncertainty level with respect to the measures is so huge that

many localization errors appear yielding a bad global navigation
performance.

Since we would like to apply our localization system to a wider
variety of indoor environments, we should relax the necessity of
having a robust low-level controller. In consequence, we  have to
look for another way  of tackling with the intrinsic uncertainty
attached to the system. To do so, this work proposes the use of
a Fuzzy Rule-based System (FRBS) able to improve the localiza-
tion stage of our previous navigation system [30] when the robust
low-level controller can not be used.

The rest of the paper is organized as follows. The next section
introduces the localization system we  want to enhance, highlight-
ing its main advantages and drawbacks. In addition, Section 2
presents several related works regarding the applicability of Soft
Computing approaches in the context of WiFi localization systems.
Then, Section 3 describes our proposal of fuzzy system for dealing
with small-scale variations during the localization stage. Section
4 presents the results obtained in experiments carried out with
two real prototypes in two different test-bed environments. Finally,
Section 5 draws some conclusions and future works.

2. Related works

The main goal of this work is to strengthen the localization
stage of our previous WiFi Partially Observable Markov Decision
Process (POMDP) Navigation System with the aim of dealing effec-
tively with small-scale variations even in challenging environments
where the use of our robust low-level controller is not feasible or
it yields really bad performance. Let us summarize our previous
proposal which represents the starting point for this work.

2.1. Advantages and drawbacks of our previous work

For a global navigation system, in which the objective is to guide
a robot to a goal room in a semi-structured environment, a topo-
logical discretization is appropriate to facilitate the planning and
learning tasks. It is especially indicated when the environment is
very large because it uses a discretization of the environment and
divides it in a priori known nodes. With this kind of representation,
POMDP models provide solutions to localization, planning, and
learning in the global robotics navigation context. These models
use probabilistic reasoning to deal with sensor and action uncer-
tainties. It is important to highlight, that robot needs a low-level
controller to move across the nodes and perform local navigation
actions commanded by the POMDP planner. In this context, using
sensors with high uncertainty, like WiFi signal strength sensors,
Markov models become the most extended models in order to build
a robust global navigation system.

When a robot moves across an environment executing several
actions (at), in execution step t, and the environment observation
is free of uncertainty, the system can be modelized as a Markov
Decision Process (MDP). The MDP  is a mathematical model that
allows the characterization of robotic systems without noise in the
environment observation. The MDP  considers that only the effect
of actions has uncertainty. In addition, when a MDP achieves some
execution steps and it goes along different states (s0, s1, . . .,  sn)
executing some actions (a0, a1, . . .,  an), the probability of being in
a state (st+1) in the execution step t + 1 is computed by Eq. (1).

p(st+1|s0, a0, s1, a1, . . . , st, at) = p(st+1|st, at) (1)

The action uncertainty model represents the real errors or fail-
ures in the execution of the actions. The transition function T
incorporates this information to the MDP. In the discrete case, T
is a matrix that represents the probability of reaching the state st+1
when the robot is in the state st and it has executed the action at.
There is a reward function R for each state s and action a. The robot
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