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Abstract

Cloud computing services are becoming more popular for various reasons which include ‘having no need for capital expenditure’ and ‘the
ability to quickly meet business demands’. However, what seems to be an attractive option may become a substantial expenditure as more projects
are moved into the cloud. Cloud service companies provide different pricing options to their customers that can potentially lower the customers’
spending on the cloud. Choosing the right combination of pricing options can be formulated as a linear mixed integer programming problem,
which can be solved using optimization.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Publishing Services by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cloud computing, which enables people to store, manage
and process data over the internet, has been receiving a
great deal of attention. Many cloud computing services are
provided in the forms of IaaS (Infrastructure as a Service), PaaS
(Platform as a Service), and SaaS (Software as a Service) [1].
Additional cloud computing services such as STaaS (STorage as
a Service) [2] and MLaaS (Machine Learning as a Service) [3]
are also now being offered. Among these services, IaaS is
actually the most basic service that provides physical or virtual
computing instances and their resources such as storage, IP
(Internet Protocol) addresses, and load balancers.

For convenient and effective management, many companies
are using the representative IaaS services such as Amazon
EC2 (Elastic Compute Cloud), Windows Azure, and Google
Compute Engine instead of their own infrastructure. However,
as the computing resources required for a company’s business
or service increase, so does the cost.
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We developed a simulation tool for minimizing the price of
IaaS services. Our approach obtains an optimized configuration
of computing instances based on a variety of IaaS pricing
policies. The current version of the simulation tool is built
for Amazon EC2, a product of AWS (Amazon Web Services)
which has been a champion in cloud computing services since
2006. However, our simulation tool can easily be extended for
use with other cloud systems since most IaaS services have
similar pricing policies.

Our simulation tool, named Ribon (Reserved Instance
simulation tool Based ON R), is open source and available on
GitHub.

The reminder of this paper is as follows. Some related works
and our contributions are presented in Section 2. Section 3
describes the overall system structure and optimization
algorithm, and Section 4 shows the various simulation results.
Finally, we present the conclusions of this study in Section 5.

2. Related works

Owing to the popularity of cloud services, there have been
a number of studies in the various pricing policies. Several
studies use reserved instance to minimize the price of cloud
services [4–7].
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The authors in [4] assume that users are differently served
according to their own class. The authors in [5] present stochas-
tic integer programming, and the authors in [6] propose a
heuristic algorithm for the high complexity of integer program-
ming.

This kind of approach using reserved instance derives the
optimal configuration of reserved instances to minimize the
total price, which

requires the expected usage of instances. Thus, the authors
in [7] build a forecasting model to predict the usage of instances
and conduct the optimization model.

Previous works have considered various functionalities;
however, some of them are not suitable for use in actual
environments. The prediction of the usage of instances is not
well defined for the computing instances in cloud systems
because actual usage fluctuates too much to predict. Instead,
we restrict the usage of each reserved instance not to exceed
a user-defined limit. This is actually very useful although it
requires user intervention. We derive the optimization problem
of heavy data by converting integer linear programming to
linear programming. Ribon is a complete system that includes
crawled data, data manipulation and optimization system, and
dashboard for user interface. It is open source and available on
GitHub to allow access and contribution by anyone.

3. System architecture

3.1. Overall system

Using the simulation tool in Fig. 1, we first collect price
information from the AWS web sites. A total of 2118 EC2
instances were collected for evaluation. There are currently six
pricing policies as follows.

• On-Demand: Pay at an hourly rate.
• No Upfront (1-year term): Pay at an hourly rate for 1-year

RIs (Reserved Instances).
• Partial Upfront (1-year term): Pay for a low upfront and at

an hourly rate for 1-year RIs.
• All Upfront (1-year term): Pay for 1-year RIs with one

upfront payment.
• Partial Upfront (3-year term): Pay for a low upfront and at

an hourly rate for 3-year RIs.
• All Upfront (3-year term): Pay for 3-year RIs with one

upfront payment.

Then, the system obtains the expected usage of instances
empirically and the previous used instances from a user, and
validates their formats and the existence of price information.
Based on the inputs from the user and the price information, the
system obtains the cost-optimized configuration of instances
and displays the results. The simulation tool has been developed
using R, for data manipulation and optimization, and Shiny, for
web dashboard.

3.2. RI optimization

This subsection described the formulation of the cost-
optimized configuration and the solution. We define T as the

Fig. 1. Simulation tool system structure.

period of simulation; N (t) as the expected usage of instances
at month t ; mχ (t) as the number of instances χ to be used at
month t ; nχ (t) as the number of instances χ to be contracted at
month t ; pχ as the monthly price of instance χ ; qχ as the up-
front price of instance χ , where χ is one of the six pricing poli-
cies {OD, 1N , 1P, 1A, 3P, 3A}; these are on-demand, 1-year
no upfront, 1-year partial upfront, 1-year all upfront, 3-year par-
tial upfront, and 3-year all upfront, respectively. Then, we can
set the objective function, f (mOD(t), nχ (t)), to be minimized
as the total price at month t , which is given as follows.

f (mOD(t), nχ (t)) =

T
t=1

{mOD(t) · pOD + m1N (t) · p1N

+ m1P (t) · p1P + m3P (t) · p3P
+ n1A(t) · q1A + n3A(t) · q3A
+ n1P (t) · q1P + n3P (t) · q3P },

m1N (t) =

t
τ=t−11

n1N (τ ) ,

m1P (t) =

t
τ=t−11

n1P (τ ) ,

m3P (t) =

t
τ=t−35

n3P (τ ) .

One constraint is that the total number of instances to be used
at month t is greater than or equal to the number of expected
instances to be used, which can be expressed as follows.

mOD(t) + m1N (t) + m1P (t) + m3P (t)

+

t
τ=t−11

n1A (τ ) +

t
τ=t−35

n3A (τ ) ≥ N (t).

Moreover, the number of instances to be used and contracted
should be greater than or equal to 0.

mOD(t), nχ (t) ≥ 0.

Additionally, we restrict the number of RIs such that it does not
exceed a user-defined percentage rχ as follows.

T
t=1

t
τ=t−11

nχ (τ ) ≤ floor


T

t=1

N (t) · rχ


(1 year term)

T
t=1

t
τ=t−35

nχ (τ ) ≤ floor


T

t=1

N (t) · rχ


(3 years term)
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