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a b s t r a c t

A new search heuristic, Divided Neighborhood Exploration Search, designed to be used with inference
algorithms such as Bayesian networks to improve on the reverse engineering of gene regulatory networks
is presented. The approach systematically moves through the search space to find topologies representa-
tive of gene regulatory networks that are more likely to explain microarray data. In empirical testing it is
demonstrated that the novel method is superior to the widely employed greedy search techniques in
both the quality of the inferred networks and computational time.

� 2016 Elsevier Inc. All rights reserved.

1. Background

A gene regulatory network (GRN) is a collection of genes, regu-
lators, and regulatory connections that govern expression levels
[1]. Analysis of GRNs has become essential for better understand-
ing cellular systems because it provides insight into which genes
control the activation of others [2,3]. The network topology has
various interpretations in literature: the nodes in the GRN may
represent genes or their protein products, the undirected edges
between nodes may indicate genes are co-regulated, share com-
mon functionality, location or process, or directly bind one
another; and directed edges may imply a step in a metabolic path-
way, signal transduction cascade, stage of development, or a causal
relationship [4]. These networks create the blackprint of the cellu-
lar system structure and provide design details of the cell.

Research in computational systems biology revolves around
inferring or reverse engineering GRNs based on gene expression
levels [5]. A basic assumption within the field is that the observed
data, which are the changes in mRNA expression profiles, can
explain transcriptional regulation. By inferring the underlying gene
regulatory network from these large-scale experiments, ultimately
the molecular role can be understood. The expression levels are the
output of specific gene regulatory networks and therefore many
algorithms have been studied to reverse engineer the GRNs most
likely to produce observed expression data. Numerous issues arise

from modeling GRNs from experimental data and therefore no one
modeling technique outperforms all others. There are a vast num-
ber of genes and potential relationships; the experimentation to
measure expression levels often result in noisy data; and there
may be unobserved factors affecting the activity of genes that are
not represented in the experiments conducted [1,6]. Once the net-
works are modeled, the topologies are scored to determine which
are most consistent with the data. However, even the simplest
GRNs are complex systems and difficult to infer.

Active research in reverse engineering of GRNs is conducted by
testing different mathematical methods on computer generated
networks where the true network is known. This allows for both
validation and analysis of various inference algorithms. There are
a few notable models commonly used for inferring GRNs: boolean
networks [7], differential equations and linearization [8], regres-
sion methods [9], Gaussian models [10], conditional correlation
analysis [11], and static and dynamic Bayesian networks [12,13].
Each provides advantages and disadvantages when inferring
topologies [14]. Ultimately, the goal is to reverse engineer net-
works with confidence that the output of the statistical model is
representative of the biological system.

1.1. Bayesian networks

Bayesian network (BN) modeling is an approach that combines
probability and graph theory which has been useful in recovering
gene regulatory networks from data. They can be used to describe
the relationship between variables in gene regulatory networks
and are promising because they can capture multiple types of
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relationships [15]. These networks describe the relationship at a
qualitative level. At the qualitative level, the graphical model
showcases the dependences between various genes, which are
encoded in the structure of the directed graph. An example BN is
depicted in Fig. 1 in which X ¼ X1; . . . ;X5ð Þ represents the genes
and the edges represent the dependencies. Each term pðXijPAiÞ is
the probability for a variable conditioned on the set of parents
PAi of Xi. Bayesian networks specify the joint distribution over all
variables for the conditional distribution of the node given the par-
ental relationship:

pðX1; . . . ;XnÞ ¼
Yn

i¼1

pðXijPAiÞ:

Numerous experiments have been conducted on in silico data to
compare Bayesian networks to other inference models. Margolin
et al. [16] developed ARACNE (algorithm for the reconstruction of
accurate cellular networks) as another algorithms for inferring
GRNs. Their study compares ARACNE to BNs because BNs are so
widely used in reverse engineering and as such, the authors claim
they provide an ideal benchmark technique. BNs are among the
most effective models because of their ability to account for the
stochastic nature of gene expression profiles and the easy integra-
tion of prior knowledge [14,17].

BNs are directed acyclic graphs and therefore the topology pro-
duced by the predicted model will include directed edges. This
allows for modeling gene expression levels which depend on the
regulators (parents) in the network. Accurate directed predictions
are more difficult than undirected predictions. Some algorithms
(e.g. ARACNE) only produce undirected results since the undirected
topologies still provide useful insight into the underlying structure.

Given observed expression data D, a Bayesian network
approach enables a quantitative assessment regarding the likeli-
hood that directed graph G produces such data. The general Baye-
sian scoring metric from [1] is the posterior probability of graph G
given D:

SðG : DÞ ¼ log PðGjDÞ ¼ log
pðDjGÞpðGÞ

pðDÞ
¼ logpðDjGÞ þ logpðGÞ þ constant: ð1Þ

The goal is to maximize the Bayesian score in Eq. (1). This score pro-
vides the ability to evaluate the quality of candidate graphs when
searching for the network topology. In particular, we employ the
Bayesian Dirichlet Equivalence (BDe) score [18,19] to help learn
the BN and evaluate candidate GRN. This score incorporates a like-
lihood equivalence assumption and also allows for the incorpora-

tion of prior knowledge [19]. If relationships between nodes are
already known, this information can be incorporated into the
model. The metric penalizes any graph not containing an edge pro-
vided in the prior network. Another advantage of the score is the
penalization of overly complex structures and the preference of
simpler models of equally good networks.

1.2. Search heuristics

Finding the network topology that maximizes the likelihood of
expressing the observed data is NP-hard [20,21]. Since the search
space is large and no efficient exact algorithms are known for this
problem, heuristic search is commonly used. The goal of heuristic
search is to find a near optimal solution quickly and efficiently.

One commonly used search heuristic is the greedy technique
hill climbing [6,22,23]. Hill climbing is similar to gradient ascent
except that no derivatives are necessary. Instead, this iterative
approach evaluates solutions that are ‘‘near” the current solution
and adopts a new solution if a better one is found in the local
search space. Compared with other techniques, this greedy search
is fast, computationally simple, and requires few tuning parame-
ters. Hill climbing, however, is myopic and prone to premature
convergence to poor local optima. Random restarts are incorporated
to mitigate this issue and expand the search region by performing
hundreds or thousands of hill climbing procedures from randomly
generated initial locations in the search space [24]. Yu et al. [15]
found hill climbing with random restarts superior to simulated
annealing and genetic algorithms. Other local search methods have
been applied to learning Bayesian networks outside of the scope of
gene regulatory networks: genetic algorithms [25], tabu search
[26], ant colony optimization [27], dynamic programming with
Markov Chain Monte Carlo techniques [28,29] and swarm opti-
mization [30].

While Bayesian networks continue to be widely studied in
application of gene regulatory network inference, research on the
search heuristics paired with GRN inference is relatively limited.
To date no search algorithms which have been paired with GRN
inference have been able to compete with both the speed and solu-
tion quality of hill climbing with random restarts. It is the focus of
this study to introduce a search heuristic that outperforms this
greedy approach without compromising computation time. In this
investigation we propose the Divided Neighborhood Exploration
Search (DNES) heuristic to be paired with the Bayesian network
modeling framework and evaluate its performance in producing
high quality GRN’s.

2. Methods

2.1. In silico data and inference

To accurately evaluate an inference method, the true network
must be known. As such, in silico data must be used. In particular,
a directed acyclic graph, G ¼ ðV ; EÞ is constructed where V is the set
of nodes, and E is the set of directed edges ði; jÞ, with i; j 2 V . The
constructed topology can then be used to generate data that simu-
lates gene expression data using ordinary differential equations
that relate the changes in gene transcript concentration to each
gene and to external perturbations. An inference method is used
to reverse engineer the original network from the data. In the pre-
sent study, we compare the implementation of Bayesian networks
with a known greedy technique versus the novel DNES algorithm.
Since the true network G is known, the quality of the engineered
network G0 is assessed based on agreement between the topologies
of G and G0. Fig. 2 depicts the high-level process.Fig. 1. Bayesian network example.
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