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a b s t r a c t

Patient interactions with health care providers result in entries to electronic health records (EHRs). EHRs
were built for clinical and billing purposes but contain many data points about an individual. Mining
these records provides opportunities to extract electronic phenotypes, which can be paired with genetic
data to identify genes underlying common human diseases. This task remains challenging: high quality
phenotyping is costly and requires physician review; many fields in the records are sparsely filled; and
our definitions of diseases are continuing to improve over time. Here we develop and evaluate a semi-
supervised learning method for EHR phenotype extraction using denoising autoencoders for phenotype
stratification. By combining denoising autoencoders with random forests we find classification improve-
ments across multiple simulation models and improved survival prediction in ALS clinical trial data. This
is particularly evident in cases where only a small number of patients have high quality phenotypes, a
common scenario in EHR-based research. Denoising autoencoders perform dimensionality reduction
enabling visualization and clustering for the discovery of new subtypes of disease. This method repre-
sents a promising approach to clarify disease subtypes and improve genotype-phenotype association
studies that leverage EHRs.

� 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Biomedical research often considers diseases as fixed pheno-
types, but many have evolving definitions and are difficult to clas-
sify. The electronic health record (EHR) is a popular source for
electronic phenotyping to augment traditional genetic association
studies, but there is a relative scarcity of research quality anno-
tated patients [1]. Electronic phenotyping relies on either codes
designed for billing or time intensive manual clinician review. This

is an ideal environment for semi-supervised algorithms, perform-
ing unsupervised learning on many patients followed by super-
vised learning on a smaller, annotated, subset. Denoising
autoencoders (DAs) are a powerful tool to perform unsupervised
learning [2]. DAs are a type of artificial neural network trained to
reconstruct an original input from an intentionally corrupted
input. Through this training they learn higher-level representa-
tions modeling the structure of the underlying data. We sought
to determine whether applying DAs to the EHR could reduce the
number of annotated patients required, construct non-billing code
based phenotypes and elucidate disease subtypes for fine-tuned
genetic association.

The United States federal government mandated meaningful
use of EHRs by 2014 to improve patient care quality, secure and
communicate patient information, and clarify patient billing
[3,4]. Despite not being designed specifically for research, EHRs
have already proven an effective source of phenotypes in genetic
association studies [5,6]. Initially, phenotypes were hand designed
based on manual clinician review of patient records. These studies
were limited by the time and cost inherent in manual review [7,8],
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but DAs can make use of unlabeled data. After unsupervised pre-
training, the trained DA’s hidden layer can be used as input to a tra-
ditional classifier to create a semi-supervised learner. This allows
the DA to learn from all samples, even those without labels, and
requires only a small subset to be annotated. Today, phenome-
wide association studies (PheWAS) are the most prevalent example
of EHR phenotyping, proving particularly effective at identifying
pleiotropic genetic variants [9]. PheWASs often use algorithms
based on the International Classification of Disease (ICD) codes to
construct a phenotype. This coding system was designed for bill-
ing, not to capture research phenotypes. DA constructed features
are combinations of many components of clinical data and may
provide a more holistic view of a patient than billing codes alone.

Through extensive study, disease diagnoses can become more
precise over time [10–14]. Cancers, for example, were historically
typed by occurrence location and the efficacy of different treat-
ments. As the mechanisms of cancer are better understood, they
are further categorized by their physiological nature. The progres-
sion of subtypes in lung cancer illustrates this increased under-
standing over time [10]. Beginning with a single diagnosis based
on occurrence in the lung, lung cancer has been divided into doz-
ens of subtypes over several decades based on histological analysis,
and genetic markers [11–14]. The unsupervised nature of DAs
means that even if the definitions of a disease change, they would
not need to be retrained. The ability to identify more homogenous
phenotypes showed increased genotype to phenotype linkage in
schizophrenia, bipolar disease [15], and Rett Syndrome [16–19].
Furthermore, type 2 diabetes subtypes have been discovered using
topological analysis of EHR patient similarity [20]. The dimension-
ality reduction possible with a DA makes clustering and visualiza-
tion more feasible. Subtyping exposes disease heterogeneity and
may contribute to additional physiological understanding.

Previous work in semi-supervised learning of the EHR relies on
closed source commercial software [20], and natural language pro-
cessing of free text fields to match clinical diagnosis [21,22]. We
are not aware of any previous work performing semi-supervised
classification and clustering from quantitative structured patient
data.

We evaluate DAs for phenotype construction using four simula-
tion models of EHR data for complex phenotypes, modify DAs to
effectively handle missingness in data and use the DA to create
cluster visualizations that can aid in the discovery of subtypes of
complex diseases. We apply these methods to predict ALS patient
survival and to visualize ALS patient clusters. ALS is a progressive
neurodegenerative disorder, which attacks the neurons responsi-
ble for controlling muscle function [23]. ALS patients typically
die within 3–5 years, but some patients can survive more than
10 years, the disease is considered clinically heterogeneous and
predicting the rate of progression can be challenging [24].

2. Methods

We developed an approach, entitled ‘‘Denoising Autoencoders
for Phenotype Stratification (DAPS),” that constructs phenotypes
through unsupervised learning. This generalized phenotype con-
struction can be used to classify whether patients have a particular
disease or to search for disease subtypes in patient populations. To
evaluate DAPS, we created a simulation framework with multiple
hidden factors influencing potentially overlapping observed vari-
ables. We evaluated the reduced DA models against feature-
complete representations with popular supervised learning algo-
rithms. These evaluations covered both complete datasets, as well
as the more realistic cases of incompletely labeled and missing
data. We developed a technique that uses the reduced feature-
space of the DA to visualize potential subtypes. Finally, we evaluate

DAs ability to predict ALS patient survival in both classification and
clustering tasks. Each of these is fully described below and full
parameters included in sweeps are available in the supplementary
materials.

Source code to reproduce each analysis is included in our repos-
itory (https://github.com/greenelab/DAPS) [25] and is provided
under a permissive open source license (3-clause BSD). A docker
build is included with the repository to provide a common envi-
ronment to easily reproduce results without installing dependen-
cies [26]. In addition, Shippable, a continuous integration
platform, is used to reanalyze results in a clean environment and
generate figures after each commit [27].

2.1. Unsupervised training with denoising autoencoders

DAs were initially introduced as a component in constructing
the deep networks used in deep learning [28]. Deep learning algo-
rithms have become the dominant performers in many domains
including image recognition, speech recognition and natural lan-
guage processing [29–34]. Recently they have also been used to
solve biological problems including tumor classification, predicting
chromatin structure and protein binding [2,35,36]. DAs showed
strong performance early in the deep learning revolution but have
been surpassed in most domains by convolutional neural networks
or recurrent neural networks [28]. While these complex deep net-
works have surpassed the performance of DAs in these areas, they
rely on strictly structured relationships such as the relative posi-
tions of pixels within an image [31,37]. This structure is unlikely
to exist in the EHR. In addition, complex deep networks are noto-
riously hard to interpret. DAs are easily generalizable, benefit from
both linear and nonlinear correlation structure in the data, and
contain accessible, interpretable, internal nodes [2]. Oftentimes
the hidden layer is a ‘‘bottle-neck”, a much smaller size than the
input layer, in order to force the autoencoder to learn the most
important patterns in the data [37].

We used the Theano library [38,39] to construct a DA consisting
of three layers, an input layer x, a single hidden layer y, and a
reconstructed layer z [28] (Fig. 1A). Noise was added to the input
layer through a stochastic corruption process, which masks 20%
of the input values, selected at random, to zero.

The hidden layer y was calculated by multiplying the input
layer by a weight vector W, adding a bias vector b and computing
the sigmoid (Formula 1). The reconstructed layer z was similarly
computed using tied weights, the transpose of W and b (Formula
2). The cost function is the cross-entropy of the reconstruction, a
measure of distance between the reconstructed layer and the input
layer (Formula 3).

y ¼ sðWxþ bÞ ðFormula1Þ

z ¼ s W 0yþ b0� � ðFormula2Þ

cost ¼ �
Xd

k¼1

xk logðzkÞ þ ð1� xkÞ logð1� zkÞ½ � ðFormula3Þ

Stochastic gradient descent was performed for 1000 training
epochs, at a learning rate of 0.1. Hidden layers of two, four, eight
and sixteen hidden nodes were included in the parameter sweep
with a 20% input corruption level. Vincent et al. [28] provide a
through explanation of training for DAs without missing data.

In the event of missing data, the cost calculation was modified
to exclude missing data from contributing to the reconstruction
cost. A missingness vector m was created for each input vector,
with a value of 1 where the data is present and 0 when the data
is missing. Both the input sample x and reconstruction z were mul-
tiplied by m and the cross entropy error was divided by the sum of
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